Notes on
Discrete Mathematics

Miguel A. Lerma

Contents

Introduction

Chapter 1. Logic, Proofs
1.1. Propositions
1.2. Predicates, Quantifiers
1.3. Proofs

Chapter 2. Sets, Functions, Relations
2.1. Set Theory
2.2. Functions
2.3. Relations

Chapter 3. Algorithms, Integers
3.1. Algorithms
3.2. The Euclidean Algorithm
3.3. Modular Arithmetic, RSA Algorithm

Chapter 4. Induction, Recurences
4.1. Sequences and Strings
4.2. Mathematical Induction
4.3. Recurrence Relations

Chapter 5. Counting
5.1. Basic Principles
5.2. Combinatorics
5.3. Generalized Permutations and Combinations
5.4. Binomial Coeflicients
5.5. The Pigeonhole Principle

Chapter 6. Probability
6.1. Probability

Chapter 7. Graph Theory
7.1. Graphs
7.2. Representations of Graphs
7.3. Paths and Circuits

11
13

19
19
27
32

38
38
48
52

29
29
62
65

69
69
71
73
75
7

78
78

82
82
38
91

CONTENTS

7.4. Planar Graphs

Chapter 8. Trees
8.1. Trees
8.2. DBinary Trees
8.3. Decision Trees, Tree Isomorphisms
8.4. Tree Transversal
8.5. Spanning Trees

Chapter 9. Boolean Algebras
9.1. Combinatorial Circuits
9.2. Boolean Functions, Applications

Chapter 10. Automata, Grammars and Languages
10.1. Finite State Machines
10.2. Languages and Grammars
10.3. Language Recognition

Appendix A.
A.1. Efficient Computation of Powers Modulo m
A.2. Machines and Languages

97

100
100
102
104
113
116

122
122
127

133
133
137
144

150
150
152

Introduction

These notes are intended to be a summary of the main ideas in
course CS 310: Mathematical Foundations of Computer Science. 1
may keep working on this document as the course goes on, so these
notes will not be completely finished until the end of the quarter.

The textbook for this course is Keneth H. Rosen: Discrete Mathe-
matics and Its Applications, Fifth Edition, 2003, McGraw-Hill. With
few exceptions I will follow the notation in the book.

These notes contain some questions and “exercises” intended to
stimulate the reader who wants to play a somehow active role while
studying the subject. They are not homework nor need to be addressed
at all if the reader does not wish to. I will recommend exercises and
give homework assignments separately.

Finally, if you find any typos or errors, or you have any suggestions,
please, do not hesitate to let me know.

Miguel A. Lerma
mlerma@math.northwestern.edu
Northwestern University

Spring 2005

http://www.math.northwestern.edu/ "mlerma/courses/cs310-05s/

CHAPTER 1

Logic, Proofs

1.1. Propositions

A proposition is a declarative sentence that is either true or false
(but not both). For instance, the following are propositions: “Paris
is in France” (true), “London is in Denmark” (false), “2 < 4”7 (true),
“4 = 7 (false)”. However the following are not propositions: “what
is your name?” (this is a question), “do your homework” (this is a
command), “this sentence is false” (neither true nor false), “x is an
even number” (it depends on what x represents), “Socrates” (it is not
even a sentence). The truth or falsehood of a proposition is called its
truth value.

1.1.1. Connectives, Truth Tables. Connectives are used for
making compound propositions. The main ones are the following (p
and ¢ represent given propositions):

Name Represented Meaning
Negation —p “not p”
Conjunction pAq “p and q”
Disjunction pVq “p or g (or both)”
Exclusive Or pEq “either p or ¢, but not both”
Implication p—q “if p then ¢”
Biconditional P q “p if and only if ¢”

The truth value of a compound proposition depends only on the
value of its components. Writing F for “false” and T for “true”, we
can summarize the meaning of the connectives in the following way:

6

1.1. PROPOSITIONS 7

Pla|p|pANq|PVa|pDg|p—q|peg
T|T| F T T F T T
T F|F F T T F F
F|T| T F T T T F
FIF|T F F F T T

Note that V represents a non-exclusive or, i.e., p V q is true when
any of p, ¢ is true and also when both are true. On the other hand &
represents an exclusive or, i.e., p @ ¢ is true only when exactly one of
p and q is true.

1.1.2. Tautology, Contradiction, Contingency.

1. A proposition is said to be a tautology if its truth value is T
for any assignment of truth values to its components. Fzxample:
The proposition p V —p is a tautology.

2. A proposition is said to be a contradiction if its truth value is F
for any assignment of truth values to its components. Fzxample:
The proposition p A —=p is a contradiction.

3. A proposition that is neither a tautology nor a contradiction is
called a contingency.

pl-p|pV-p|[pA-p
T F| T F
T F| T F
FIT| T F
FIT| T F

T T

tautology contradiction

1.1.3. Conditional Propositions. A proposition of the form “if
p then ¢” or “p implies ¢”, represented “p — ¢” is called a conditional
proposition. For instance: “if John is from Chicago then John is from
[llinois”. The proposition p is called hypothesis or antecedent, and the
proposition ¢ is the conclusion or consequent.

Note that p — ¢ is true always except when p is true and ¢ is false.
So, the following sentences are true: “if 2 < 4 then Paris is in France”
(true — true), “if London is in Denmark then 2 < 4”7 (false — true),

1.1. PROPOSITIONS 8

“if 4 = 7 then London is in Denmark” (false — false). However the
following one is false: “if 2 < 4 then London is in Denmark” (true —
false).

In might seem strange that “p — ¢” is considered true when p is
false, regardless of the truth value of ¢. This will become clearer when
we study predicates such as “if x is a multiple of 4 then z is a multiple
of 27. That implication is obviously true, although for the particular
case © = 3 it becomes “if 3 is a multiple of 4 then 3 is a multiple of 2”.

The proposition p < ¢, read “p if and only if ¢”, is called bicon-
ditional. It is true precisely when p and ¢ have the same truth value,
i.e., they are both true or both false.

1.1.4. Logical Equivalence. Note that the compound proposi-
tions p — ¢ and —p V ¢ have the same truth values:

pla|-p|PVqg|p—yq
TIT F| T T
T F[F| F F
FIT| T | T T
FIF| T| T T

When two compound propositions have the same truth values no
matter what truth value their constituent propositions have, they are
called logically equivalent. For instance p — ¢ and —p V q are logically
equivalent, and we write it:

p—q=-"pVg
Note that that two propositions A and B are logically equivalent
precisely when A < B is a tautology.

Example: De Morgan’s Laws for Logic. The following propositions
are logically equivalent:

= pA—q
—(pAq) = pV g

=R
S|

<
)

|

We can check it by examining their truth tables:

1.1. PROPOSITIONS 9

plq|-p|-q|pVag|[-(pVg | PA-qgpAqg|-(pAg)|-pV g
TIT|F|F| T F F T F F
TIF|F|T| T F F F T T
FIT|T|F| T F F F T T
FIF|T|T| F T T F T T

Example: The following propositions are logically equivalent:

pe=q=@—q9N(q—Dp)

Again, this can be checked with the truth tables:

plalp—=qla—=pl = Ng—=p) Py
TT| T T T T
TIF| F T F F
FIT| T F F F
FIF| T T T T

FExercise: Check the following logical equivalences:

“(p—q) =pA—q
p—q=—qg— P
“(pe—=q) =pdyg

1.1.5. Converse, Contrapositive. The converse of a conditional
proposition p — ¢ is the proposition ¢ — p. As we have seen, the bi-
conditional proposition is equivalent to the conjunction of a conditional
proposition an its converse.

p—q=({@P—q9AN(q—Dp)

So, for instance, saying that “John is married if and only if he has a
spouse” is the same as saying “if John is married then he has a spouse”
and “if he has a spouse then he is married”.

Note that the converse is not equivalent to the given conditional
proposition, for instance “if John is from Chicago then John is from
[llinois” is true, but the converse “if John is from Illinois then John is
from Chicago” may be false.

1.1. PROPOSITIONS 10

The contrapositive of a conditional proposition p — ¢ is the propo-
sition mq¢ — —p. They are logically equivalent. For instance the con-
trapositive of “if John is from Chicago then John is from Illinois” is “if
John is not from Illinois then John is not from Chicago”.

1.2. PREDICATES, QUANTIFIERS 11

1.2. Predicates, Quantifiers

1.2.1. Predicates. A predicate or propositional function is a state-
ment containing variables. For instance “x +2 = 7", “X is American”,
“r <y”, “pis a prime number” are predicates. The truth value of the
predicate depends on the value assigned to its variables. For instance if
we replace x with 1 in the predicate “x+2 = 7” we obtain “1+2 =77,
which is false, but if we replace it with 5 we get “5 + 2 = 7”7, which
is true. We represent a predicate by a letter followed by the variables
enclosed between parenthesis: P(z), Q(x,y), etc. An example for P(z)
is a value of x for which P(x) is true. A counterezample is a value of
x for which P(z) is false. So, 5 is an example for “z + 2 = 7", while 1
is a counterexample.

Each variable in a predicate is assumed to belong to a universe (or
domain) of discourse, for instance in the predicate “n is an odd integer”
'n’ represents an integer, so the universe of discourse of n is the set of
all integers. In “X is American” we may assume that X is a human
being, so in this case the universe of discourse is the set of all human
beings.!

1.2.2. Quantifiers. Given a predicate P(z), the statement “for
some z, P(x)” (or “there is some x such that p(z)”), represented
“Jz P(x)”, has a definite truth value, so it is a proposition in the
usual sense. For instance if P(x) is “z + 2 = 77 with the integers as
universe of discourse, then 3z P(x) is true, since there is indeed an
integer, namely 5, such that P(5) is a true statement. However, if
Q(z) is “2x = 77 and the universe of discourse is still the integers,
then 3z Q(x) is false. On the other hand, 3z Q(z) would be true if we
extend the universe of discourse to the rational numbers. The symbol
7 is called the existential quantifier.

Analogously, the sentence “for all z, P(x)”—also “for any x, P(x)”,
“for every x, P(z)”, “for each x, P(x)”—, represented “Vz P(z)”, has
a definite truth value. For instance, if P(z) is “c +2 = 7" and the

1Usually all variables occurring in predicates along a reasoning are supposed to
belong to the same universe of discourse, but in some situations (as in the so called
many-sorted logics) it is possible to use different kinds of variables to represent
different types of objects belonging to different universes of discourse. For instance
in the predicate “o is a string of length n” the variable o represents a string, while
n represents a natural number, so the universe of discourse of ¢ is the set of all
strings, while the universe of discourse of n is the set of natural numbers.

1.2. PREDICATES, QUANTIFIERS 12

universe of discourse is the integers, then Va P(z) is false. However if
Q(x) represents “(z + 1)* = 22 + 2z + 1”7 then Vz Q(z) is true. The
symbol V is called the universal quantifier.

In predicates with more than one variable it is possible to use several
quantifiers at the same time, for instance VaxVy3z P(x,y, z), meaning
“for all x and all y there is some z such that P(z,y,2)”.

Note that in general the existential and universal quantifiers cannot
be swapped, i.e., in general Vzdy P(z,y) means something different
from JyVx P(x,y). For instance if z and y represent human beings and
P(z,y) represents “x is a friend of y”, then Vx3dy P(z,y) means that
everybody is a friend of someone, but Jy¥x P(z,y) means that there
is someone such that everybody is his or her friend.

A predicate can be partially quantified, e.g. Va3y P(z,y, z,t). The
variables quantified (z and y in the example) are called bound variables,
and the rest (z and ¢ in the example) are called free variables. A
partially quantified predicate is still a predicate, but depending on
fewer variables.

1.2.3. Generalized De Morgan Laws for Logic. If 3z P(z) is
false then there is no value of x for which P(z) is true, or in other
words, P(z) is always false. Hence

—Jdx P(z) = Vax—-P(x).

On the other hand, if Vo P(z) is false then it is not true that for
every x, P(x) holds, hence for some x, P(x) must be false. Thus:

—Vx P(z) = Jx—-P(x).

This two rules can be applied in successive steps to find the negation
of a more complex quantified statement, for instance:

—JaVyp(z,y) = Vo-Vy P(z,y) = Yoy -P(z,y).

Exercise: Write formally the statement “for every real number there
is a greater real number”. Write the negation of that statement.

Answer: The statement is: Va 3y (z < y) (the universe of discourse
is the real numbers). Its negation is: JzVy =(z < y), i.e., Iz Vy (z £ y).
(Note that among real numbers x £ y is equivalent to = > y, but
formally they are different predicates.)

1.3. PROOFS 13

1.3. Proofs

1.3.1. Mathematical Systems, Proofs. A Mathematical Sys-
tem consists of:

1. Axzioms: propositions that are assumed true.

2. Definitions: used to create new concepts from old ones.

3. Undefined terms: corresponding to the primitive concepts of the
system (for instance in set theory the term “set” is undefined).

A theorem is a proposition that can be proved to be true. An
argument that establishes the truth of a proposition is called a proof.

FExample: Prove that if x > 2 and y > 3 then x +y > 5.

Answer: Assuming x > 2 and y > 3 and adding the inequalities
term by term we get: x +y > 2+ 3 = 5.

That is an example of direct proof. In a direct proof we assume the
hypothesis together with axioms and other theorems previously proved
and we derive the conclusion from them.

An indirect proof or proof by contrapositive consists of proving the
contrapositive of the desired implication, i.e., instead of proving p — ¢
we prove —q — .

FExample: Prove that if x +y > 5 then x > 2 or y > 3.

Answer: We must prove that z +y > 5 — (z > 2) V (y > 3). An
indirect proof consists of proving =((x > 2) V (y > 3)) — ~(x +y > 5).
In fact: =((z > 2) V (y > 3)) is the same as (z < 2)A(y < 3), so adding
both inequalities we get x + y < 5, which is the same as =(z + y > 5).

Proof by Contradiction. In a proof by contradiction or (Reductio ad
Absurdum) we assume the hypotheses and the negation of the conclu-
sion, and try to derive a contradiction, i.e., a proposition of the form
r AT

Ezxample: Prove by contradiction that if x4y > 5 then either z > 2
or y > 3.

Answer: We assume the hypothesis © + y > 5. From here we must
conclude that x > 2 or y > 3. Assume to the contrary that “z > 2 or
y > 37 is false, so x < 2 and y < 3. Adding those inequalities we get

1.3. PROOFS 14

r < 2+ 3 =5, which contradicts the hypothesis x 4+ y > 5. From here
we conclude that the assumption “xr < 2 and y < 3” cannot be right,
so “xr > 2 or y > 3”7 must be true.

Remark: Sometimes it is difficult to distinguish between an indirect
proof and a proof by contradiction. In an indirect proof we prove an
implication of the form p — ¢ by proving the contrapositive ~q —
—p. In an proof by contradiction we prove an statement s (which
may or may not be an implication) by assuming —s and deriving a
contradiction. In fact proofs by contradiction are more general than
indirect proofs.

Ezercise: Prove by contradiction that v/2 is not a rational number,
i.e., there are no integers a, b such that v/2 = a/b.

Answer: Assume that /2 is rational, i.e., v/2 = a/b, where a and b
are integers and the fraction is written in least terms. Squaring both
sides we have 2 = a?/b?, hence 2b* = a®. Since the left hand side is
even, then a? is even, but this implies that a itself is even, so a = 2d’.
Hence: 2b? = 44, and simplifying: b2 = 24>, This implies that b2
is even, so b is even: b = 2b'. Consequently a/b = 2d//20 = d'/V,
contradicting the hypothesis that a/b was in least terms.

1.3.2. Arguments, Rules of Inference. An argument is a se-
quence of propositions pq,pa,...,p, called hypotheses (or premises)
followed by a proposition g called conclusion. An argument is usually
written:

P1
P2
Pn
q
or
P1,D2, - - 7pn/ .o q
The argument is called valid if q is true whenever py, ps, ..., p, are

true; otherwise it is called invalid.

1.3. PROOFS 15

Rules of inference are certain simple arguments known to be valid
and used to make a proof step by step. For instance the following
argument is called modus ponens or rule of detachment:

p—4q
_r
q

In order to check whether it is valid we must examine the following
truth table:

plg|p—aq|p |4
T/ T T |T|T
T|F F T|F
T T F|T
FI|F T F|F

If we look now at the rows in which both p — ¢ and p are true (just
the first row) we see that also ¢ is true, so the argument is valid.

Other rules of inference are the following:

1. Modus Ponens or Rule of Detachment:

pP—yq
_r
q

2. Modus Tollens:
pP—q
L S
-p

3. Addition:

. pVyg
4. Simplification:
PAg

5. Conjunction:

1.3. PROOFS 16

p
4
pPAg

6. Hypothetical Syllogism:
pP—4q
q—r
p—r

7. Disjunctive Syllogism:

pPVyq
—p

8. Resolution:
pVyq
pVr
qVvr

Arguments are usually written using three columns. Each row con-
tains a label, a statement and the reason that justifies the introduction
of that statement in the argument. That justification can be one of the
following;:

1. The statement is a premise.
2. The statement can be derived from statements occurring earlier
in the argument by using a rule of inference.

FExample: Consider the following statements: “I take the bus or
I walk. If T walk I get tired. I do not get tired. Therefore I take the
bus.” We can formalize this by calling B = “I take the bus”, W =
“I walk” and T" = “I get tired”. The premises are BVW , W — T and
=T, and the conclusion is B. The argument can be described in the
following steps:

step statement reason

1) W—T Premise

2) =T Premise

3) W 1,2, Modus Tollens

4) BVW Premise

5 ..B 4,3, Disjunctive Syllogism

1.3. PROOFS 17

1.3.3. Rules of Inference for Quantified Statements. We
state the rules for predicates with one variable, but they can be gener-
alized to predicates with two or more variables.

1. Universal Instantiation. If Vo p(x) is true, then p(a) is true for
each specific element a in the universe of discourse; i.e.:

v p(z)
p(a)
For instance, from Vz (z+1 = 14+x) we can derive 74+1 = 1+47.

2. Euistential Instantiation. If 3z p(x) is true, then p(a) is true for
some specific element a in the universe of discourse; i.e.:

Jz p(x)

p(a)
The difference respect to the previous rule is the restriction in
the meaning of a, which now represents some (not any) element
of the universe of discourse. So, for instance, from 3z (z? = 2)
(the universe of discourse is the real numbers) we derive the

existence of some element, which we may represent /2, such
that (£v/2)? = 2.

3. Universal Generalization. If p(x) is proved to be true for a
generic element in the universe of discourse, then Vz p(x) is
true; i.e.:

p(x)

vz p(x)
By “generic” we mean an element for which we do not make any
assumption other than its belonging to the universe of discourse.
So, for instance, we can prove Vz [(z + 1)* = 2% + 22 + 1] (say,
for real numbers) by assuming that z is a generic real number
and using algebra to prove (z + 1)? = 22 + 2x + 1.

4. Existential Generalization. If p(a) is true for some specific ele-

ment a in the universe of discourse, then 3z p(x) is true; i.e.:

p(a)
Jz p(z)

For instance: from 7+ 1 = 8 we can derive dx (z + 1 = 8).

FExample: Show that a counterexample can be used to disprove a
universal statement, i.e., if a is an element in the universe of discourse,

1.3. PROOFS 18

then from —p(a) we can derive =V p(x). Answer: The argument is as
follows:

step statement reason

1) —p(a) Premise
2) dx—p(x) Existential Generalization
3) —Vap(r) Negation of Universal Statement

CHAPTER 2

Sets, Functions, Relations

2.1. Set Theory

2.1.1. Sets. A set is a collection of objects, called elements of the
set. A set can be represented by listing its elements between braces:
A ={1,2,3,4,5}. The symbol € is used to express that an element is
(or belongs to) a set, for instance 3 € A. Its negation is represented by
&, e.g. 7¢& A. If the set is finite, its number of elements is represented
|Al, e.g. if A={1,2,3,4,5} then |A| =5.

Some important sets are the following:

N ={0,1,2,3,---} = the set of natural numbers.
{+,-3,-2,—-1,0,1,2,3,--- } = the set of integers.
the set of rational numbers.

= the set of real numbers.

= the set of complex numbers.

1.
2. 7
3. Q
4 R
5. C

Is S is one of those sets then we also use the following notations:?

1. St = set of positive elements in S, for instance
Zt =1{1,2,3,---} = the set of positive integers.
2. S7 = set of negative elements in .9, for instance
7= ={-1,-2,-3,---} = the set of negative integers.

3. S* = set of elements in S excluding zero, for instance R* = the
set of non zero real numbers.

Set-builder notation. An alternative way to define a set, called set-
builder notation, is by stating a property (predicate) P(zx) verified by
exactly its elements, for instance A = {x € Z |1 < 2 < 5} = “set of

INote that N includes zero—for some authors N = {1,2,3,---}, without zero.
2When working with strings we will use a similar notation with a different
meaning—Dbe careful not to confuse it.

19

2.1. SET THEORY 20

integers x such that 1 < o < 5"—ie: A= {1,2,3,4,5}. In general:
A={x e U|p(zx)}, where U is the universe of discourse in which the
predicate P(z) must be interpreted, or A = {z | P(x)} if the universe
of discourse for P(x) is implicitly understood. In set theory the term
universal set is often used in place of “universe of discourse” for a given
predicate.?

Principle of Extension. Two sets are equal if and only if they have
the same elements, i.e.:

A=B=Vr(rec A—x€B).

Subset. We say that A is a subset of set B, or A is contained in
B, and we represent it “A C B”, if all elements of A are in B, e.g., if
A ={a,b,c} and B = {a,b,c,d,e} then A C B.

A is a proper subset of B, represented “A C B”, if A C B but
A # B, i.e., there is some element in B which is not in A.

Empty Set. A set with no elements is called empty set (or null set,
or void set), and is represented by 0 or {}.

Note that nothing prevents a set from possibly being an element of
another set (which is not the same as being a subset!). For instance
if A= {1,a,{3,t},{1,2,3}} and B = {3,t}, then obviously B is an
element of A, i.e., B € A.

Power Set. The collection of all subsets of a set A is called the
power set of A, and is represented P(A). For instance, if A = {1,2,3},

then
P(A) ={0, {1}, {2}, {3}, {1, 2}, {1,3},{2,3}, A}
FEzercise: Prove by induction that if |A| = n then |P(A)| = 2".

Multisets. Two ordinary sets are identical if they have the same
elements, so for instance, {a,a,b} and {a, b} are the same set because
they have exactly the same elements, namely a and b. However, in
some applications it might be useful to allow repeated elements in a
set. In that case we use multisets, which are mathematical entities
similar to sets, but with possibly repeated elements. So, as multisets,
{a,a,b} and {a, b} would be considered different, since in the first one
the element a occurs twice and in the second one it occurs only once.

3Properly speaking, the universe of discourse of set theory is the collection of
all sets (which is not a set).

2.1. SET THEORY 21

2.1.2. Venn Diagrams. Venn diagrams are graphic representa-
tions of sets as enclosed areas in the plane. For instance, in figure 2.1,
the rectangle represents the universal set (the set of all elements con-
sidered in a given problem) and the shaded region represents a set A.
The other figures represent various set operations.

FIGURE 2.1. Venn Diagram.

FIGURE 2.2. Intersection A N B.

FiGURE 2.3. Union AU B.

2.1. SET THEORY 22

FIGURE 2.4. Complement A.

FIGURE 2.5. Difference A — B.

FIGURE 2.6. Symmetric Difference A& B.

2.1.3. Set Operations.

1. Intersection: The common elements of two sets:
ANB={z|(x € A)A(x € B)}.
If AN B =), the sets are said to be disjoint.

2. Union: The set of elements that belong to either of two sets:
AUB={x|(x€ A)V (x € B)}.

2.1. SET THEORY 23

3. Complement: The set of elements (in the universal set) that do
not belong to a given set:

A={rclU|xgA}.

4. Difference or Relative Complement: The set of elements that
belong to a set but not to another:

A-B={z|(reAN(xgB)}=ANB.

5. Symmetric Difference: Given two sets, their symmetric differ-
ence is the set of elements that belong to either one or the other
set but not both.

AeB={z|(zr€cA) & (x € B)}.
It can be expressed also in the following way:
ADB=AUB—-ANB=(A-B)U(B-A).

2.1.4. Counting with Venn Diagrams. A Venn diagram with
n sets intersecting in the most general way divides the plane into 2"
regions. If we have information about the number of elements of some
portions of the diagram, then we can find the number of elements in
each of the regions and use that information for obtaining the number
of elements in other portions of the plane.

Example: Let M, P and C be the sets of students taking Mathe-
matics courses, Physics courses and Computer Science courses respec-
tively in a university. Assume |M| = 300, |P| = 350, |C| = 450,
|M N P| =100, | MNC|=150, |PNC| =175 |[MNnPNC|=10. How
many students are taking exactly one of those courses? (fig. 2.7)

<
o

/=)
V.

FiGure 2.7. Counting with Venn diagrams.

We see that |[(MNP)—(MNPNC)| = 100—10 = 90, |(MNC)—(MnN
PNC)| =150—10 = 140 and |(PNC) — (MNPAC)| = 75— 10 = 65.

2.1. SET THEORY 24

Then the region corresponding to students taking Mathematics courses
only has cardinality 300—(90+10+140) = 60. Analogously we compute
the number of students taking Physics courses only (185) and taking
Computer Science courses only (235). The sum 60 + 185 + 235 = 480
is the number of students taking exactly one of those courses.

2.1.5. Properties of Sets. The set operations verify the follow-
ing properties:

1. Associative Laws:
AUu(BUC)=(AUuB)UC
AN(BNnC)=(AnB)nC

2. Commutative Laws:

AUB=BUA
ANB=BnNA
3. Distributive Laws:
Au(BNC)=(AUB)N(AUC)
AN(BUC)=(ANB)U(ANC)
4. Identity Laws:

Aubd=A
ANU=A
5. Complement Laws:
AUA=U
ANA=1
6. Idempotent Laws:
AUA=A
ANA=A
7. Bound Laws:
Aull=U
ANP=10
8. Absorption Laws:
AU(ANB)=A
AN(AUB)=A

9. Involution Law:

2.1. SET THEORY 25

10. 0/1 Laws:
0=Uu
U=10
11. DeMorgan’s Laws:
AUB=ANB
ANB=AUB

2.1.6. Generalized Union and Intersection. Given a collec-
tion of sets Aq, Ay, ..., Ay, their union is defined as the set of elements
that belong to at least one of the sets (here n represents an integer in
the range from 1 to N):

N

UJAr=A404 U UAy ={z|3n(z € A,)}.

n=1
Analogously, their intersection is the set of elements that belong to all
the sets simultaneously:

N
(NAn=AinAn--NAy={z|Vn(z€A,)}.

n=1

These definitions can be applied to infinite collections of sets as well.
For instance assume that S, = {kn | k = 2,3,4, ...} = set of multiples
of n greater than n. Then

L Su=5%uUS;uS;u---={4,6,89,10,12,14,15,...}
n=2

= set of composite positive integers.

2.1.7. Partitions. A partition of a set X is a collection 8§ of non
overlapping non empty subsets of X whose union is the whole X. For
instance a partition of X = {1,2,3,4,5,6,7,8,9,10} could be

$ ={{1,2,4,8},{3,6},{5,7,9,10}} .

Given a partition 8 of a set X, every element of X belongs to exactly
one member of §.

Example: The division of the integers Z into even and odd numbers
is a partition: § = {E,Q}, where E={2n |n€Z},0={2n+1|n ¢
7}.

2.1. SET THEORY 26

FExample: The divisions of Z in negative integers, positive integers
and zero is a partition: 8§ = {Z*, Z~,{0}}.

2.1.8. Ordered Pairs, Cartesian Product. An ordinary pair
{a, b} is a set with two elements. In a set the order of the elements is
irrelevant, so {a,b} = {b,a}. If the order of the elements is relevant,
then we use a different object called ordered pair, represented (a,b).
Now (a,b) # (b,a) (unless a = b). In general (a,b) = (a/,0) iff a = @’
and b= 10"

Given two sets A, B, their Cartesian product A x B is the set of all
ordered pairs (a,b) such that a« € A and b € B:
Ax B={(a,b)| (a€ A)AN(be B)}.

Analogously we can define triples or 3-tuples (a, b, ¢), 4-tuples (a, b, ¢, d),
.., n-tuples (ay,as,...,a,), and the corresponding 3-fold, 4-fold,. ..,
n-fold Cartesian products:

A1XA2><---><An:
{(al,aQ,...,an)\(a1EAl)/\(agGAQ)/\---/\(anGAn)}.

If all the sets in a Cartesian product are the same, then we can use
an exponent: A2 = A x A, A=A x A x A, etc. In general:

(n times)

A" =Ax Ax - X A.

An example of Cartesian product is the real plane R?, where R is
the set of real numbers (R is sometimes called real line).

2.2. FUNCTIONS 27

2.2. Functions

2.2.1. Correspondences. Suppose that to each element of a set
A we assign some elements of another set B. For instance, A = N,
B = 7Z, and to each element x € N we assign all elements y € Z such
that y* = z (fig. 2.8).

FIGURE 2.8. Correspondence z — ++/z.

This operation is called a correspondence.

2.2.2. Functions. A function or mapping f from a set A to a set
B, denoted f : A — B, is a correspondence in which to each element
x of A corresponds exactly one element y = f(x) of B (fig. 2.9).

FIGURE 2.9. Function.

Sometimes we represent the function with a diagram like this:

f:A—>B ALB
or

Ty Ty

2.2. FUNCTIONS 28
For instance, the following represents the function from Z to Z
defined by f(z) =2z + 1:
f:7Z—7Z
r—2r+1

The element y = f(x) is called the image of z, and x is a preimage
of y. For instance, if f(z) = 2z + 1 then f(7) =2-7+1 = 15. The
set A is the domain of f, and B is its codomain. If A’ C A, the image
of A" by fis f(A) ={f(z) | x € A’}, i.e., the subset of B consisting
of all images of elements of A’. The subset f(A) of B consisting of
all images of elements of A is called the range of f. For instance, the
range of f(x) = 2x + 1 is the set of all integers of the form 2z + 1 for
some integer z, i.e., all odd numbers.

Example: Two useful functions from R to Z are the following:

1. The floor function:
| x| = greatest integer less than or equal to x .
For instance: [2] =2, |2.3] =2, |7| =3, |-2.5] = —3.
2. The ceiling function:
[x] = least integer greater than or equal to .
For instance: [2] =2, [2.3] =3, [7] =4, [-2.5] = —2.
Ezample: The modulus operator is the function mod : Z x Z* — Z
defined:
x mod y = remainder when z is divided by y.
For instance 23 mod 7 = 2 because 23 = 3-7+2, 59 mod 9 = 5 because
59 =6-9+5, etc.

Graph: The graph of a function f : A — B is the subset of A x B
defined by G(f) = {(z, f(x)) | x € A} (fig. 2.10).

2.2.3. Types of Functions.

1. One-to-One or Injective: A function f : A — B is called one-
to-one or injective if each element of B is the image of at most
one element of A (fig. 2.11):

Ve, o' € A, f(x) = f(2') =z =2a".

2.2. FUNCTIONS 29

FIGURE 2.10. Graph of f(z) = z°.

For instance, f(x) = 2x from Z to Z is injective.

.

A B

FIGURE 2.11. One-to-one function.

2. Onto or Surjective: A function f : A — B is called onto or
surjective if every element of B is the image of some element of

A (fig. 2.12):
Vy € B, 3z € A such that y = f(z).

For instance, f(z) = z* from R to R* U {0} is onto.

=)

FIGURE 2.12. Onto function.

3. One-To-One Correspondence or Bijective: A function f: A —
B is said to be a one-to-one correspondence, or bijective, or a

2.2. FUNCTIONS 30

bijection, if it is one-to-one and onto (fig. 2.13). For instance,
f(z) =2+ 3 from Z to Z is a bijection.

A B

F1GURE 2.13. Bijection.

2.2.4. Identity Function. Given a set A, the function 14 : A —
A defined by 14(x) = z for every z in A is called the identity function
for A.

2.2.5. Function Composition. Given two functions f : A — B
and g : B — C, the composite function of f and g is the function
gof:A— C defined by (go f)(xz) = g(f(x)) for every x in A:

gof
/_\
A f B g

z b—— y=f(2) ——— 2=g(y)=g(f(x))

For instance, if A= B =C =17, f(z) =z + 1, g(x) = z*, then
(9o f)(x) = f(x)* = (x+1)%. Also (fog)(z) = g(x)+1=a”+1 (the
composition of functions is not commutative in general).

Some properties of function composition are the following:

1. If f: A— B is a function from A to B, we have that fol, =
1BOf:f.

2. Function composition is associative, i.e., given three functions
AlpLcoc™p,
we have that ho(go f) = (hog)o f.

2.2. FUNCTIONS 31

Function iteration. If f: A — A is a function from A to A, then
it makes sense to compose it with itself: f2 = f o f. For instance, if
[:Z — Zis f(z) = 2z + 1, then f?(z) =22z + 1) + 1 = 4z + 3.
Analogously we can define f3 = fo fof, and so on, f* = fotimeslo f.

2.2.6. Inverse Function. If f : A — B is a bijective function, its
inverse is the function f~!: B — A such that f~!(y) = x if and only

if f(z) =y.

For instance, if f : Z — Z is defined by f(z) = x + 3, then its
inverse is f~!(x) =z — 3.

The arrow diagram of f~! is the same as the arrow diagram of f
but with all arrows reversed.

A characteristic property of the inverse function is that f~lof = 14
and f o f_l =1g.

2.2.7. Operators. A function from A x A to A is called a binary
operator on A. For instance the addition of integers is a binary oper-
ator + : Z X Z — 7. In the usual notation for functions the sum of
two integers z and y would be represented +(z,y). This is called prefix
notation. The infiz notation consists of writing the symbol of the bi-
nary operator between its arguments: z+y (this is the most common).
There is also a postfix notation consisting of writing the symbol after
the arguments: xy 4.

Another example of binary operator on Z is (x,y) — z - y.

A monary or unary operator on A is a function from A to A. For
instance the change of sign x — —x on Z is a unary operator on Z. An
example of unary operator on R* (non-zero real numbers) is z +— 1/z.

2.3. RELATIONS 32

2.3. Relations

2.3.1. Relations. Assume that we have a set of men M and a set
of women W, some of whom are married. We want to express which
men in M are married to which women in W. One way to do that is by
listing the set of pairs (m,w) such that m is a man, w is a woman, and
m is married to w. So, the relation “married to” can be represented
by a subset of the Cartesian product M x W. In general, a relation R
from a set A to a set B will be understood as a subset of the Cartesian
product A x B, ie., R C A x B. If an element a € A is related to an
element b € B, we often write a R b instead of (a,b) € R.

The set
{a € A| aRb for some b € B}

is called the domain of R. The set
{b€ B|aRb for some a € A}

is called the range of R. For instance, in the relation “married to”
above, the domain is the set of married men, and the range is the set
of married women.

If A and B are the same set, then any subset of A x A will be a
binary relation in A. For instance, assume A = {1,2,3,4}. Then the
binary relation “less than” in A will be:

<a={(z,y) e Ax A|z <y}
={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)} .

Notation: A set A with a binary relation R is sometimes represented
by the pair (A,R). So, for instance, (Z, <) means the set of integers
together with the relation of non-strict inequality.

2.3.2. Representations of Relations.

Arrow diagrams. Venn diagrams and arrows can be used for repre-
senting relations between given sets. As an example, figure 2.14 rep-
resents the relation from A = {a,b,¢,d} to B = {1,2,3,4} given by
R ={(a,1),(b,1),(c,2),(c,3)}. In the diagram an arrow from z to y
means that x is related to y. This kind of graph is called directed graph
or digraph.

2.3. RELATIONS 33

FIGURE 2.14. Relation.

Another example is given in diagram 2.15, which represents the
divisibility relation on the set {1,2,3,4,5,6,7,8,9}.

FIGURE 2.15. Binary relation of divisibility.

Matriz of a Relation. Another way of representing a relation R
from A to B is with a matrix. Its rows are labeled with the elements
of A, and its columns are labeled with the elements of B. If a € A
and b € B then we write 1 in row a column b if a Rb, otherwise we
write 0. For instance the relation R = {(a,1), (b,1), (¢,2), (¢, 3)} from
A={a,b,c,d} to B=1{1,2,3,4} has the following matrix:

1 2 3 4
a {1 0 0 0
b 11 0 00
c {01 10
d \0 0 0O

2.3.3. Inverse Relation. Given a relation R from A to B, the
inverse of R, denoted R~!, is the relation from B to A defined as

bR 'a < aRb.

2.3. RELATIONS 34

For instance, if R is the relation “being a son or daughter of”, then
R~ is the relation “being a parent of”.

2.3.4. Composition of Relations. Let A, B and C be three sets.
Given a relation R from A to B and a relation 8 from B to C, then
the composition 8§ o R of relations R and § is a relation from A to C'
defined by:

a (8 o R)c < there exists some b € B such that aRb and bSc.

For instance, if R is the relation “to be the father of”, and & is the
relation “to be married to”, then 8 o R is the relation “to be the father
in law of”.

2.3.5. Properties of Binary Relations. A binary relation R on
A is called:

1. Reflezive if for all x € A, x Rx. For instance on Z the relation
“equal to” (=) is reflexive.

2. Transitive if for all z,y,z2 € A, xRy and y Rz implies z R z.
For instance equality (=) and inequality (<) on Z are transitive
relations.

3. Symmetric if for all z,y € A, xRy = y R x. For instance on 7Z,
equality (=) is symmetric, but strict inequality (<) is not.

4. Antisymmetric if for all x,y € A, Ry and y R x implies © = y.
For instance, non-strict inequality (<) on Z is antisymmetric.

2.3.6. Partial Orders. A partial order, or simply, an order on a
set A is a binary relation “<” on A with the following properties:

1. Reflexive: for allz € A, x X .
2. Antisymmetric: (z < y) A
3. Transitive: (z S YN (y < 2) =2 <X 2.

Examples:

1. The non-strict inequality (<) in Z.

2. Relation of divisibility on Z*: alb < 3t, b = at.

2.3. RELATIONS 35

3. Set inclusion (C) on P(A) (the collection of subsets of a given
set A).

Ezercise: prove that the aforementioned relations are in fact partial
orders. As an example we prove that integer divisibility is a partial
order:

1. Reflexive: a = al = ala.

2. Antisymmetric: alb = b = at for some ¢t and bla = a = bt’ for
some t'. Hence a = att’, which implies tt’ =1 = t' = t~1. The
only invertible positive integer is 1, sot =t' =1 = a = b.

3. Transitive: a|b and b|c implies b = at for some t and ¢ = bt’ for
some t', hence ¢ = att’, i.e., alc.

Question: is the strict inequality (<) a partial order on Z?

Two elements a,b € A are said to be comparable if either x < y
or y < x, otherwise they are said to be non comparable. The order
is called total or linear when every pair of elements z,y € A are com-
parable. For instance (Z, <) is totally ordered, but (Z*,|), where “|”
represents integer divisibility, is not. A totally ordered subset of a par-
tially ordered set is called a chain; for instance the set {1,2,4,8,16, ...}
is a chain in (Z7,]).

2.3.7. Hasse diagrams. A Hasse diagram is a graphical represen-
tation of a partially ordered set in which each element is represented
by a dot (node or vertex of the diagram). Its immediate successors are
placed above the node and connected to it by straight line segments. As
an example, figure 2.16 represents the Hasse diagram for the relation
of divisibility on {1,2,3,4,5,6,7,8,9}.

Question: How does the Hasse diagram look for a totally ordered
set?

2.3.8. Equivalence Relations. An equivalence relation on a set
A is a binary relation “~” on A with the following properties:

1. Reflexive: for all x € A, x ~ .
2. Symmetric: x ~ y =1y ~ T.
3. Transitive: (x ~ y)AN(y ~ z) =>x ~ 2.

2.3. RELATIONS 36

FIGURE 2.16. Hasse diagram for divisibility.

For instance, on Z, the equality (=) is an equivalence relation.

Another example, also on Z, is the following: z = y (mod 2) (“x is
congruent to y modulo 2”) iff z —y is even. For instance, 6 = 2 (mod 2)
because 6 —2 = 4 is even, but 7 # 4 (mod 2), because 7 — 4 = 3 is not
even. Congruence modulo 2 is in fact an equivalence relation:

1. Reflexive: for every integer x, z—x = 0 is indeed even, so xr = x
(mod 2).

2. Symmetric: if z = y (mod 2) then z —y = t is even, but
y —x = —t is also even, hence y = = (mod 2).

3. Transitive: assume x = y (mod 2) and y = 2z (mod 2). Then
x—y=tand y—z = u are even. From here, z — 2z = (v —y) +
(y — z) =t + u is also even, hence x = z (mod 2).

2.3.9. Equivalence Classes, Quotient Set, Partitions. Given
an equivalence relation ~ on a set A, and an element x € A, the
set of elements of A related to x are called the equivalence class of
x, represented [x] = {y € A | y ~ z}. Element z is said to be a
representative of class

[z]. The collection of equivalence classes, represented A/~ = {[z] |
x € A}, is called quotient set of A by ~.

FEzxercise: Find the equivalence classes on Z with the relation of
congruence modulo 2.

One of the main properties of an equivalence relation on a set A
is that the quotient set, i.e. the collection of equivalence classes, is
a partition of A. Recall that a partition of a set A is a collection of

2.3. RELATIONS 37

non-empty subsets A;, As, As,... of A which are pairwise disjoint and
whose union equals A:

1. A,ﬂA]:@forz%],
2.1, A, = A.

Example: in Z with the relation of congruence modulo 2 (call it
“rvg”), there are two equivalence classes: the set E of even integers and
the set O of odd integers. The quotient set of Z by the relation “~y”
of congruence modulo 2 is Z/ ~y = {E, Q}. We see that it is in fact a
partition of Z, because ENQ =, and Z = EU Q.

FExercise: Let m be an integer greater than or equal to 2. On Z
we define the relation x = y (mod m) < m|(y — z) (i.e., m divides
exactly y — x). Prove that it is an equivalence relation. What are the

equivalence classes? How many are there?

Ezercise: On the Cartesian product Z x Z* we define the relation
(a,b) R(c,d) < ad = be. Prove that R is an equivalence relation.
Would it still be an equivalence relation if we extend it to Z x Z7

CHAPTER 3

Algorithms, Integers

3.1. Algorithms

Consider the following list of instructions to find the maximum of
three numbers a, b, c:

1. Assign variable x the value of a.

2. If b > x then assign = the value of b.
3. If ¢ > x then assign x the value of c.
4. Output the value of x.

After executing those steps the output will be the maximum of a, b, c.

In general an algorithm is a finite list of instructions with the fol-
lowing characteristics:

1. Precision. The steps are precisely stated.

2. Uniqueness. The result of executing each step is uniquely de-
termined by the inputs and the result of preceding steps.

3. Finiteness. The algorithm stops after finitely many instructions
have been executed.

4. Input. The algorithm receives input.

Output. The algorithm produces output.

6. Generality. The algorithm applies to a set of inputs.

ot

Basically an algorithm is the idea behind a program. Conversely,
programs are implementations of algorithms.

3.1.1. Pseudocode. Pseudocode is a language similar to a pro-
gramming language used to represent algorithms. The main difference
respect to actual programming languages is that pseudocode is not re-
quired to follow strict syntactic rules, since it is intended to be just
read by humans, not actually executed by a machine.

38

3.1. ALGORITHMS 39

Usually pseudocode will look like this:

procedure ProcedureName (Input)
Instructions...
end ProcedureName

For instance the following is an algorithm to find the maximum of
three numbers a, b, c:

1: procedure max(a,b,c)
2 X 1= a

3 if b>x then

4: X :=Db

5: if ¢>x then

6: X :=¢C

7 return x

8: end max

Next we show a few common operations in pseudocode.

The following statement means “assign variable x the value of vari-
able y:

X 1=y

[l

The following code executes “action” if condition “p” is true:

if p then
action

[l

The following code executes “actionl” if condition “p” is true, oth-
erwise it executes “action2”:

if p then
actionl

else
action?2

[13)]

The following code executes “action” while condition “p” is true:

1: while p
2: action

The following is the structure of a for loop:

3.1. ALGORITHMS 40

for var := init to limit
action

If an action contains more than one statement then we must enclose
them in a block:

begin
Instructionl
Instruction?2
Instruction3

end

Comments are enclose between brackets:

{This is a comment}

The output of a procedure is returned with a return statement:

return output

Procedures that do not return anything are invoked with a call
statement:

call Procedure (arguments. . .)

As an example, the following procedure returns the largest number
in a sequence si,So,...S, represented as an array with n elements:
s[1], s[2],..., s[nl:

: procedure largest_element(s,n)
largest := s[1]
for k := 2 ton
if s[k] > largest then
largest := s[k]
return largest
: end largest_element

~NOoO O WN -

3.1.2. Recursiveness.

Recursive Definitions. A definition such that the object defined oc-
curs in the definition is called a recursive definition. For instance,

3.1. ALGORITHMS 41

consider the Fibonacci sequence
0,1,1,2,3,5,8,13,. ..

It can be defined as a sequence whose two first terms are Fy = 0,
F} =1 and each subsequent term is the sum of the two previous ones:
F,=F, 1+ F, 5 (forn>2).

Other examples:

e Factorial:
1. 0I=1
2.nl=n-(n—1)! (n>1)

e Power:
1.a’=1
2. a"=a""1a (n>1)

In all these examples we have:

1. A Basis, where the function is explicitly evaluated for one or
more values of its argument.

2. A Recursive Step, stating how to compute the function from its
previous values.

Recursive Procedures. A recursive procedure is a procedure that in-
vokes itself. Also a set of procedures is called recursive if they invoke
themselves in a circle, e.g., procedure p; invokes procedure py, proce-
dure py invokes procedure ps and procedure ps invokes procedure p.
A recursive algorithm is an algorithm that contains recursive proce-
dures or recursive sets of procedures. Recursive algorithms have the
advantage that often they are easy to design and are closer to natural
mathematical definitions.

As an example we show two alternative algorithms for computing
the factorial of a natural number, the first one iterative (non recursive),
the second one recursive.

1: procedure factorial _iterative(n)
2 fact := 1

3 for k := 2 ton

4: fact := k *x fact

5 return fact

6: end factorial_iterative

3.1. ALGORITHMS 42

: procedure factorial recursive(n)
if n = 0 then
return 1
else
return n * factorial_recursive(n-1)
: end factorial_recursive

o O WN -

While the iterative version computes n! = 1-2-...n directly, the
recursive version resembles more closely the formula n! =n - (n — 1)!

A recursive algorithm must contain at least a basic case without
recursive call (the case n = 0 in our example), and any legitimate
input should lead to a finite sequence of recursive calls ending up at
the basic case. In our example n is a legitimate input if it is a natural
number, i.e., an integer greater than or equal to 0. If n = 0 then
factorial recursive(0) returns 1 immediately without performing
any recursive call. If n > then the execution of

factorial recursive(n)
leads to a recursive call
factorial recursive(n-1)
which will perform a recursive call
factorial recursive(n-2)
and so on until eventually reaching the basic case
factorial _recursive(0)
After reaching the basic case the procedure returns a value to the last

call, which returns a value to the previous call, and so on up to the
first invocation of the procedure.

Another example is the following algorithm for computing the nth
element of the Fibonacci sequence:

3.1. ALGORITHMS 43

: procedure fibonacci(n)
if n=0 then
return 0
if n=1 then
return 1
return fibonacci(n-1) + fibonacci(n-2)
: end fibonacci

~N O O WN

In this example we have two basic cases, namely n = 0 and n = 1.

In this particular case the algorithm is inefficient in the sense that
it performs more computations than actually needed. For instance a
call to fibonacci (5) contains two recursive calls, one to fibonacci (4)
and another one to fibonacci(3). Then fibonacci (4) performs a call
to fibonacci(3) and another call to fibonacci(2), so at this point we
see that fibonacci(3) is being called twice, once inside fibonacci (5)
and again in fibonacci(4). Hence sometimes the price to pay for a
simpler algorithmic structure is a loss of efficiency.

However careful design may yield efficient recursive algorithms. An
example is merge_sort, and algorithm intended to sort a list of ele-
ments. First let’s look at a simple non recursive sorting algorithm
called bubble_sort. The idea is to go several times through the list
swapping adjacent elements if necessary. It applies to a list of numbers
SiySi+1,--.,5; represented as an array s[i], s[i+1],..., s[jl:

1: procedure bubble_sort(s,i,j)
2 for p:=1 to j-i

3 for q:=i to j-p

4: if s[q] > s[q+1] then
5: swap(slql,s[q+1])

6: end bubble_sort

We can see that bubble_sort requires n(n — 1)/2 comparisons and
possible swapping operations.

On the other hand, the idea of merge_sort is to split the list into
two approximately equal parts, sort them separately and then merge
them into a single list:

3.1. ALGORITHMS 44

: procedure merge_sort(s,i, j)
if i=j then
return
m := floor((i+j)/2)
call merge _sort(s,i,m)
call merge_sort(s,m+1,j)
call merge(s,i,m,j,c)
for k:=i to j
s[k] := cl[k]
10: end merge_sort

O ~NO O WN -

©

The procedure merge(s,i,m, j,c) merges the two increasing sequences
iy Sit1s- -+, Sm and Spyy1, Smye, ..., s into a single increasing sequence
Cis Cit1, - - -, Cj. This algorithm is more efficient than bubble_sort be-
cause it requires only about n log, n operations (we will make this more
precise soon).

The strategy of dividing a task into several smaller tasks is called
divide and conquer.

3.1.3. Complexity. In general the complexity of an algorithm is
the amount of time and space (memory use) required to execute it.
Here we deal with time complexity only.

Since the actual time required to execute an algorithm depends on
the details of the program implementing the algorithm and the speed
and other characteristics of the machine executing it, it is in general
impossible to make an estimation in actual physical time, however it
is possible to measure the length of the computation in other ways,
say by the number of operations performed. For instance the following

loop performs the statement x := x + 1 exactly n times,
1: fori := 1 ton
2: x :=x +1

The following double loop performs it n? times:

1: fori :=1 ton
2 for j :=1ton
3 Xx :=x + 1

The following one performs it 1 +2+3+---+n=n(n+ 1)/2 times:

3.1. ALGORITHMS 45

1: fori := 1 ton
2 for j :=1toi
3 X :=x + 1

Since the time that takes to execute an algorithm usually depends
on the input, its complexity must be expressed as a function of the
input, or more generally as a function of the size of the input. Since
the execution time may be different for inputs of the same size, we
define the following kinds of times:

1. Best-case time: minimum time needed to execute the algorithm
among all inputs of a given size n.

2. Wost-case time: maximum time needed to execute the algo-
rithm among all inputs of a given size n.

3. Average-case time: average time needed to execute the algo-
rithm among all inputs of a given size n.

For instance, assume that we have a list of n objects one of which is
colored red and the others are colored blue, and we want to find the one
that is colored red by examining the objects one by one. We measure
time by the number of objects examined. In this problem the minimum
time needed to find the red object would be 1 (in the lucky event that
the first object examined turned out to be the red one). The maximum
time would be n (if the red object turns out to be the last one). The
average time is the average of all possible times: 1,2, 3,...,n, which is
(14243+---4+n)/n = (n+1)/2. So in this example the best-case time
is 1, the worst-case time is n and the average-case time is (n +1)/2.

Often the exact time is too hard to compute or we are interested
just in how it grows compared to the size of the input. For instance
and algorithm that requires exactly 7n? + 3n + 10 steps to be executed
on an input of size n is said to be or order n?, represented ©(n?). This
justifies the following notations:

Big Oh Notation. A function f(n) is said to be of order at most
g(n), written f(n) = O(g(n)), if there is a constant C} such that

|f(n)] < Cilg(n)]

for all but finitely many positive integers n.

3.1. ALGORITHMS 46

Omega Notation. A function f(n) is said to be of order at least
g(n), written f(n) = Q(g(n)), if there is a constant C5 such that

|f(n)] > Calg(n)]
for all but finitely many positive integers n.

Theta Notation. A function f(n) is said to be of order g(n), written
f(n) =O(g(n)), if f(n) = O(g(n)) and f(n) = Q(g(n)).

Remark: All logarithmic functions are of the same order: log,n =
O(log, n) for any a, b > 1, because log, n = log, n/ log, a, so they always
differ in a multiplicative constant. As a consequence, if the execution
time of an algorithm is of order a logarithmic function, we can just say
that its time is “logarithmic”, we do not need to specify the base of
the logarithm.

The following are several common growth functions:

Order Name

O(1) Constant
O(loglogn) Log log
O(logn) Logarithmic
©(nlogn) nlogn
O(n) Linear
O(n?) Quadratic
O(n?) Cubic

O(nk) Polynomial
O(a") Exponential

Let’s see now how we find the complexity of algorithms like bubble_sort
and merge_sort.

Since bubble_sort is just a double loop its complexity is easy to
find; the inner loop is executed

m-1)4+n—-2)+---+1=n(n-1)/2

times, so it requires n(n — 1)/2 comparisons and possible swap opera-
tions. Hence its execution time is ©(n?).

The estimation of the complexity of merge_sort is more involved.
First, the number of operations required by the merge procedure is
O(n). Next, if we call T'(n) (the order of) the number of operations

3.1. ALGORITHMS 47

required by merge_sort working on a list of size n, we see that roughly:
T(n)=2T(n/2)+n.
Replacing n with n/2 we have T'(n/2) = 27(n/4) + n/2, hence
T(n)=2T(n/2) +n=212T(n/4) +n/2) +n=4T(n/4) + 2n.
Repeating k times we get:
T(n) = 2*T(n/2%) + kn.
So for k = log, n we have
T(n) =nT(1) 4+ nlogyn = O(nlogn).

3.2. THE EUCLIDEAN ALGORITHM 48

3.2. The Euclidean Algorithm

3.2.1. The Division Algorithm. The following result is known
as The Division Algorithm:* If a,b € Z, b > 0, then there exist unique
q,7 € Z such that a = qgb+r, 0 < r < b. Here ¢ is called quotient of
the integer division of a by b, and r is called remainder.

3.2.2. Divisibility. Given two integers a, b, b # 0, we say that b
divides a, written bla, if there is some integer ¢ such that a = bq:

bla < Jq, a = bq .

We also say that b divides or is a divisor of a, or that a is a multiple
of b.

3.2.3. Prime Numbers. A prime number is an integer p > 2
whose only positive divisors are 1 and p. Any integer n > 2 that is not
prime is called composite. A non-trivial divisor of n > 2 is a divisor d
of n such that 1 < d < n, so n > 2 is composite iff it has non-trivial
divisors. Warning: 1 is not considered either prime or composite.

Some results about prime numbers:

1. For all n > 2 there is some prime p such that p|n.
2. (Euclid) There are infinitely many prime numbers.

3. If p|ab then pla or p|b. More generally, if p|ajas . .. a, then p|ay
for some k=1,2,...,n.

3.2.4. The Fundamental Theorem of Arithmetic. Every in-
teger n > 2 can be written as a product of primes uniquely, up to the
order of the primes.

It is customary to write the factorization in the following way:
n=pi'py ... Py,
where all the exponents are positive and the primes are written so that
p1 < py < --- < pg. For instance:
13104 =2*.3%.7-13.

IThe result is not really an “algorithm”, it is just a mathematical theorem.
There are, however, algorithms that allow us to compute the quotient and the
remainder in an integer division.

3.2. THE EUCLIDEAN ALGORITHM 49

3.2.5. Greatest Common Divisor. A positive integer d is called
a common divisor of the integers a and b, if d divides a and b. The
greatest possible such d is called the greatest common divisor of a and b,
denoted ged(a, b). If ged(a,b) = 1 then a,b are called relatively prime.

Ezample: The set of positive divisors of 12 and 30 is {1,2,3,6}.
The greatest common divisor of 12 and 30 is ged(12,30) = 6.

A few properties of divisors are the following. Let m, n, d be
integers. Then:

1. If djm and d|n then d|(m +n).
2. If d|m and d|n then d|(m — n).
3. If d|m then d|mn.

Another important result is the following: Given integers a, b, ¢, the
equation
ar +by =c
has integer solutions if and only if ged(a,b) divides ¢. That is an
example of a Diophantine equation. In general a Diophantine equation
is an equation whose solutions must be integers.

Ezample: We have ged(12,30) = 6, and in fact we can write 6 =
1-30—2-12. The solution is not unique, for instance 6 = 3-30 —7-12.

3.2.6. Finding the gcd by Prime Factorization. We have that
ged(a, b) = product of the primes that occur in the prime factorizations

of both a and b, raised to their lowest exponent. For instance 1440 =
25.32.5 1512 =23 .33 -7, hence ged(1440,1512) = 23 - 3% = 72.

Factoring numbers is not always a simple task, so finding the ged
by prime factorization might not be a most convenient way to do it,
but there are other ways.

3.2.7. The Euclidean Algorithm. Now we examine an alter-
native method to compute the ged of two given positive integers a, b.
The method provides at the same time a solution to the Diophantine
equation:

ax + by = ged(a, b) .

It is based on the following fact: given two integers a > 0 and
b >0, and r = a mod b, then ged(a,b) = ged(b, 7). Proof: Divide a by

3.2. THE EUCLIDEAN ALGORITHM 50

b obtaining a quotient ¢ and a remainder r, then
a=bg+r, 0<r<b.

If d is a common divisor of @ and b then it must be a divisor of r = a—bq.
Conversely, if d is a common divisor of b and r then it must divide
a = bq + r. So the set of common divisors of a and b and the set of
common divisors of b and r are equal, and the greatest common divisor
will be the same.

The Euclidean algorithm is a follows. First we divide a by b, obtain-
ing a quotient ¢ and a remainder r. Then we divide b by 7, obtaining
a new quotient ¢ and a remainder 1. Next we divide r by 7/, which
gives a quotient ¢” and another remainder r”. We continue dividing
each remainder by the next one until obtaining a zero remainder, and
which point we stop. The last non-zero remainder is the ged.

Example: Assume that we wish to compute ged(500,222). Then we
arrange the computations in the following way:

500 = 2222456 — 7 =56

222 = 3-56+54 — 1r'=54

56 = 1-54+2 — =2

54 = 27-2+0 — =0
The last nonzero remainder is " = 2, hence ged(500,222) = 2. Fur-
thermore, if we want to express 2 as a linear combination of 500 and
222, we can do it by working backward:

2=56—-1-54=56—1-(222—3-56) =4-56—1-222
=4-(500—2-222) —1-222=4-500—-9-222.

The algorithm to compute the ged can be written as follows:

1: procedure gcd(a,b)
2: if a<b then {make a the largest}
3 swap(a,b)

4 while b # 0

5 begin

6: r := a modb
7 a:=b

8 b =1

9 end

10 return a

11: end gcd

o O WN

3.2. THE EUCLIDEAN ALGORITHM

The next one is a recursive version of the Euclidean algorithm:

: procedure gcd recurs(a,b)

if b=0 then
return a
else
return gcd recurs(b,a mod b)

: end gcd_recurs

51

3.3. MODULAR ARITHMETIC, RSA ALGORITHM 52

3.3. Modular Arithmetic, RSA Algorithm

3.3.1. Congruences Modulo m. Given an integer m > 2, we
say that a is congruent to b modulo m, written a = b (mod m), if
m|(a — b). Note that the following conditions are equivalent

=b (mod m).
= b+ km for some integer k.

1. a
2. a
3. a and b have the same remainder when divided by m.

The relation of congruence modulo m is an equivalence relation. It
partitions Z into m equivalence classes of the form

2] = [z]m ={z+km | keZ}.

For instance, for m = 5, each one of the following rows is an equivalence
class:

—-10 =5|0|5 10 15 20
-9 —4/1(6 11 16 21
-8 =327 12 17 22
-7 =2(3|8 13 18 23
—6 —1(4|9 14 19 24

Each equivalence class has exactly a representative r such that 0 < r <
m, namely the common remainder of all elements in that class when di-
vided by m. Hence an equivalence class may be denoted [r]| or z+mZ,
where 0 < r < m. Often we will omit the brackets, so that the equiva-
lence class [r] will be represented just r. The set of equivalence classes
(i.e., the quotient set of Z by the relation of congruence modulo m) is
denoted Z,, = {0,1,2,...,m — 1}. For instance, Zs = {0, 1,2, 3,4}.

Remark: When writing “r” as a notation for the class of r we may
stress the fact that r represents the class of r rather than the integer r
by including “ (mod p)” at some point. For instance 8 = 3 (mod p).
Note that in “a = b (mod m)”, a and b represent integers, while in
“a =b (mod m)” they represent elements of Z,,.

Reduction Modulo m: Once a set of representatives has been chosen
for the elements of 7Z,,, we will call “r reduced modulo m”, written
“r mod m”, the chosen representative for the class of r. For instance,
if we choose the representatives for the elements of Zs in the interval
from 0 to 4 (Zs = {0,1,2,3,4}), then 9 mod 5 = 4. Another possibility
is to choose the representatives in the interval from —2 to 2 (Zs =
{-2,-1,0,1,2}), so that 9 mod 5 = —1

3.3. MODULAR ARITHMETIC, RSA ALGORITHM 53

In Z,, it is possible to define an addition and a multiplication in
the following way:

[z] + [y] = [z + y]; (] - [y] = [z - y].

As an example, tables 3.3.1 and 3.3.2 show the addition and multi-
plication tables for Z5 and Zg respectively.

+/0 1 2 3 4 101 2 3 4
0/01 2 3 4 0/0 00 0 O
111 2 3 40 110 1 2 3 4
212 3 401 20 2 41 3
313401 2 3/0 31 4 2
414 01 2 3 410 4 3 21

TABLE 3.3.1. Operational tables for Zs

+/0 1 2 3 4 5 101 2 3 45
0|0 12 3 465 0/0 OO0 0O
111 2 3 450 110 1 2 3 45
212 345 01 210 2 40 2 4
3134501 2 310 30 3 0 3
414 5 01 2 3 410 4 2 0 4 2
51501 2 3 4 5/0 543 21
TABLE 3.3.2. Operational tables for Zg

A difference between this two tables is that in Zj5 every non-zero
element has a multiplicative inverse, i.e., for every x € Zs such that
x # 0 there is an z ! such that v - 27! = 27! 2 = 1; eg. 271 =4
(mod 5). However in Zg that is not true, some non-zero elements like
2 have no multiplicative inverse. Furthermore the elements without
multiplicative inverse verify that they can be multiply by some other
non-zero element giving a product equal zero, e.g. 2-3 = 0 (mod 6).
These elements are called divisors of zero. Of course with this definition
zero itself is a divisor of zero. Divisors of zero different from zero are
called proper divisors of zero. For instance in Zg 2 is a proper divisor
of zero. In Zs there are no proper divisors of zero.

In general:

1. The elements of Z,, can be classified into two classes:

3.3. MODULAR ARITHMETIC, RSA ALGORITHM 54

(a) Units: elements with multiplicative inverse.
(b) Divisors of zero: elements that multiplied by some other
non-zero element give product zero.
2. An element [a] € Z,, is a unit (has a multiplicative inverse) if
and only if ged(a, m) = 1.
3. All non-zero elements of Z,, are units if and only if m is a prime
number.

The set of units in Z,, is denoted Z;,. For instance:

Zy = {1}
Zy={1,2}

Z; =1{1,3}
Z;={1,2,3,4}

Zi ={1,5}
Z:=1{1,2,3,4,5,6}
Zy ={1,3,5,7}

Z¢ ={1,2,4,5,7,8}

Given an element [a] in ZF,, its inverse can be computed by using
the Euclidean algorithm to find ged(a, m), since that algorithm also
provides a solution to the equation ax +my = ged(a,m) = 1, which is

equivalent to az =1 (mod m).

Ezample: Find the multiplicative inverse of 17 in Zg,. Answer: We
use the Euclidean algorithm:

64 = 3-174+13 — r=13
17 = 1-13+4 — r=4
13 = 3-4+4+1 — r=1
4 = 4-1+0 — r=0

Now we compute backward:

1=13-3-4=13-3-(17—1-13) =4-13—3-17
—4-(64—3-17)—3-17=4-64 —15-17.
Hence (—15) - 17 = 1 (mod 64), but —15 = 49 (mod 64), so the in-

verse of 17 in (Z},,-) is 49. We will denote this by writing 17! = 49
(mod 64), or 177! mod 64 = 49.

3.3. MODULAR ARITHMETIC, RSA ALGORITHM 55

3.3.2. Euler’s Phi Function. The number of units in Z,, is equal
to the number of positive integers not greater than and relatively
prime to m, i.e., the number of integers a such that 1 < a < m and
ged(a,m) = 1. That number is given by the so called Euler’s phi
function:

¢(m) = number of positive integers not greater than m
and relatively prime to m .
For instance, the positive integers not greater than and relatively prime
to 15 are: 1,2,4,7,8,11,13, 14, hence ¢(15) = 8.
We have the following results:

1. If p is a prime number and s > 1, then ¢(p°) = p* — p*! =
p°(1 —1/p). In particular ¢(p) =p — 1.

2. If my, my are two relatively prime positive integers, then ¢(mimy) =

P(m1) ¢(m2)-1

3. If m = pi'p3?...p¥, where the p; are prime and the s; are
positive, then

p(m) =m (1 —1/p1) (1 =1/pa) ... (1 = 1/p).

For instance

6(15) = 6(3-5) = 6(3) - 6(5) = (3—1)- (5-1) =2-4=38.

3.3.3. Euler’s Theorem. If a and m are two relatively prime
positive integers, m > 2, then
a®™ =1 (mod m).

The particular case in which m is a prime number p, Euler’s theorem
is called Fermat’s Little Theorem:

a?'=1 (mod p).
For instance, if a = 2 and p = 7, then we have, in fact, 2771 = 26 =

64=1+9-7=1 (mod 7).

A consequence of Euler’s Theorem is the following. If ged(a, m) = 1
then

r=y (mod ¢(m)) = a*=da’ (modm).

YA function f(z) of positive integers such that ged(a,b) = 1 = f(ab) =
f(a)f(b) is called multiplicative.

3.3. MODULAR ARITHMETIC, RSA ALGORITHM 56

Consequently, the following function is well defined:
Ly X L) — Loy,
([a]m, [#s(m)) = [a*]m

Hence, we can compute powers modulo m in the following way:

n __ ,.n mod ¢(m)

a*=a (mod m) ,

if ged(a, m) = 1. For instance:

39734888 mod 100 = 39734888 mod ¢(100) mod 100

— 39734888 mod 40 11,4 100 = 3% mod 100 = 6561 mod 100 = 61.

An even more efficient way to compute powers modulo m is given
in Appendix A, paragraph A.1.

3.3.4. Application to Cryptography: RSA Algorithm. The
RSA algorithm is an encryption scheme designed in 1977 by Ronald
Rivest, Adi Shamir and Leonard Adleman. It allows encrypting a mes-
sage with a key (the encryption key) and decrypting it with a different
key (the decryption key). The encryption key is public and can be
given to everybody. The decryption key is private and is known only
by the recipient of the encrypted message.

The RSA algorithm is based on the following facts. Given two
prime numbers p and ¢, and a positive number m relatively prime to p
and ¢, Euler’s theorem tells us that:

m?®) — p@-D@-D — 1 (mod pg).
Assume now that we have two integers e and d such that e-d = 1

(mod ¢(pq)). Then we have that

e)d e-d

(m®)*=m“*=m (mod pq).

So, given m® we can recover m modulo pg by raising to the dth power.

The RSA algorithm consists of the following:

1. Generate two large primes p and ¢. Find their product n = pq.

2. Find two numbers e and d (in the range from 2 to ¢(n)) such
that e-d = 1 (mod ¢(n)). This requires some trial and error.
First e is chosen at random, and the Euclidean algorithm is
used to find ged(e,m), solving at the same time the equation
ex + my = ged(e,m). If ged(e,m) = 1 then the value obtained

3.3. MODULAR ARITHMETIC, RSA ALGORITHM 57

for x is d. Otherwise, e is no relatively prime to ¢(n) and we
must try a different value for e.

3. The public encryption key will be the pair (n,e). The private
decryption key will be the pair (n,d). The encryption key is
given to everybody, while the decryption key is kept secret by
the future recipient of the message.

4. The message to be encrypted is divided into small pieces, and
each piece is encoded numerically as a positive integer m smaller
than n.

5. The number m¢ is reduced modulo n; m’ = m*® mod n.

d

6. The recipient computes m” = m’® mod n, with 0 < m” < n.

It remains to prove that m” = m. If m is relatively prime to p and
q, then from Euler’s theorem we get that m” = m (mod n), and since
both are in the range from 0 to n — 1 they must be equal. The case in
which p or ¢ divides m is left as an exercise.

3.3.5. The Chinese Remainder Theorem. Let mq,ms,...,m;
be pairwise relatively prime integers greater than or equal to 2. The
following system of congruences

x = r; (modm)
xr = 719 (mod my)
x = 1 (mod my)

has a unique solution modulo M = myms ... my.
We can find a solution to that system in the following way. Let
M; = M/m;, and s; = the inverse of M; in Z,,.. Then
xr = M1$17“1 + MQSQT‘Q + -+ MkSka
is a solution to the system.
Example: A group of objects can be arranged in 3 rows leaving 2
left, in 5 rows leaving 4 left, and in 7 rows leaving 6 left. How many

objects are there? Answer: We must solve the following system of
congruences:

r = 2 (mod 3)
r = 4 (modb)
r = 6 (modT7)

3.3. MODULAR ARITHMETIC, RSA ALGORITHM 58

We have: M = 3-5-7 = 105, M; = 105/3 = 35 = 2 (mod 3),
My =105/5 =21 =1 (mod 5), M3 =105/7 =15 =1 (mod 7); s; =
“inverse of 2 in Z3” = 2, sy = “inverse of 1 in Z5” = 1, s3 = “inverse
of 1in Z;” = 1. Hence the solution is

2=235-2-2421-1-4+15-1-6=314=104 (mod 105).

Hence, any group of 104 + 105k objects is a possible solution to the
problem.

CHAPTER 4

Induction, Recurences

4.1. Sequences and Strings

4.1.1. Sequences. A sequence is an (usually infinite) ordered list
of elements. Examples:

1. The sequence of positive integers:

1,2,3,4,....m,...

2. The sequence of positive even integers:
2,4,6,8,...,2n,...

3. The sequence of powers of 2:
1,2,4,8,16,...,n°%,...

4. The sequence of Fibonacci numbers (each one is the sum of the
two previous ones):

0,1,1,2,3,5,8,13,. ..

5. The reciprocals of the positive integers:
111 1

17_7_7_7'”7 y T
2°'3 4 n

In general the elements of a sequence are represented with an in-
dexed letter, say si,S2,S3,...,Sn,.... The sequence itself can be de-
fined by giving a rule, e.g.: s, = 2n + 1 is the sequence:

3,5,7,9,. ..

Here we are assuming that the first element is sy, but we can start at
any value of the index that we want, for instance if we declare sy to be
the first term, the previous sequence would become:

1,3,5,7,9,. ..
The sequence is symbolically represented {s,} or {s,}>2 ;.

59

4.1. SEQUENCES AND STRINGS 60

If s, < s,41 for every n the sequence is called increasing. If s, >
Snt1 then it is called decreasing. For instance s,, = 2n+1 is increasing;:
3,5,7,9,..., while s,, = 1/n is decreasing: 1, %, %, TR

If we remove elements from a sequence we obtain a subsequence.
E.g., if we remove all odd numbers from the sequence of positive inte-
gers:

1,2,3,4,5...,
we get the subsequence consisting of the even positive integers:

2,4,6,8,...

4.1.2. Sum (Sigma) and Product Notation. In order to ab-
breviate sums and products the following notations are used:

1. Sum (or sigma) notation:

n
E ai:am+am+1+am+2+"'+an

i=m

2. Product notation:

Hai:am.am+1.am+2. cec Ay
For instance: assume a,, = 2n + 1, then
6
Zan:a3+a4+a5+a6:7+9+11+13:4O.
n=3
6
[[an=as-as-as-ag=7-9-11-13=9009.

n=3

4.1.3. Strings. Given a set X, a string over X is a finite ordered
list of elements of X.

Ezample: If X is the set X = {a,b,c}, then the following are ex-
amples of strings over X: aba, aaaa, bba, etc.

Qb3 2.3

Repetitions can be specified with a superscripts, for instance: a*b’ac’a” =

aabbbaccaaa, (ab)® = ababab, etc.

The length of a string is its number of elements, e.g., |abaccbab| = 8,
la?b"a3cb) = 18.

4.1. SEQUENCES AND STRINGS 61

The string with no elements is called null string, represented \. Its
length is, of course, zero: |A\| = 0.

The set of all strings over X is represented X*. The set of no
null strings over X (i.e., all strings over X except the null string) is
represented X .

Given two strings a and 3 over X, the string consisting of « followed
by 3 is called the concatenation of a and (3. For instance if a = abac
and § = baaab then af = abacbaaab.

4.2. MATHEMATICAL INDUCTION 62

4.2. Mathematical Induction

Many properties of positive integers can be proved by mathematical
induction.

4.2.1. Principle of Mathematical Induction. Let P be a prop-
erty of positive integers such that:

1. Basis Step: P(1) is true, and

2. Inductive Step: if P(n) is true, then P(n + 1) is true.

Then P(n) is true for all positive integers.

Remark: The premise P(n) in the inductive step is called Induction
Hypothesis.

The validity of the Principle of Mathematical Induction is obvious.
The basis step states that P(1) is true. Then the inductive step implies
that P(2) is also true. By the inductive step again we see that P(3)
is true, and so on. Consequently the property is true for all positive
integers.

Remark: In the basis step we may replace 1 with some other integer
m. Then the conclusion is that the property is true for every integer n
greater than or equal to m.

Example: Prove that the sum of the n first odd positive integers is
n? ie,14+3+5+--+(2n—1)=n%

Answer: Let S(n) =14+3+5+--- 4 (2n — 1). We want to prove

by induction that for every positive integer n, S(n) = n?.

1. Basis Step: If n = 1 we have S(1) = 1 = 12, so the property is
true for 1.

2. Inductive Step: Assume (Induction Hypothesis) that the prop-
erty is true for some positive integer n, i.e.: S(n) = n%. We must
prove that it is also true for n + 1, i.e., S(n+1) = (n+ 1) In
fact:

Sn+1)=1+4+3+5+--+2n+1)=95n)+2n+1.

4.2. MATHEMATICAL INDUCTION 63
But by induction hypothesis, S(n) = n?, hence:
Sn+1)=n*4+2n+1=(n+1)>2.

This completes the induction, and shows that the property is true for
all positive integers.

FExample: Prove that 2n + 1 < 2" for n > 3.

Answer: This is an example in which the property is not true for
all positive integers but only for integers greater than or equal to 3.

1. Basis Step: It n = 3 we have 2n +1 = 2-3 + 1 = 7 and
2" = 23 = 8, so the property is true in this case.

2. Inductive Step: Assume (Induction Hypothesis) that the prop-
erty is true for some positive integer n, i.e.: 2n 4+ 1 < 2. We
must prove that it is also true for n+1, i.e., 2(n+1)+1 < 27*1,
By the induction hypothesis we know that 2n < 2", and we also
have that 3 < 2™ if n > 3, hence

20n+1)+1=2n+3 < 2" 2" = 2",

This completes the induction, and shows that the property is true for
all n > 3.

Ezxercise: Prove the following identities by induction:

1
. 1+2+3+-~-+n:@.
. 12+22+32+~-+n2:n(n+1)6(2n+1).

e P +2° 4+ 3%+ 4P =(1+2+3+---+n)
4.2.2. Strong Form of Mathematical Induction. Let P be a

property of positive integers such that:

1. Basis Step: P(1) is true, and

2. Inductive Step: if P(k) is true for all 1 < k <n then P(n + 1)
Is true.

Then P(n) is true for all positive integers.

4.2. MATHEMATICAL INDUCTION 64

FExample: Prove that every integer n > 2 is prime or a product of
primes. Answer:

1. Basis Step: 2 is a prime number, so the property holds for
n = 2.

2. Inductive Step: Assume that if 2 < k < n, then k is a prime
number or a product of primes. Now, either n + 1 is a prime
number or it is not. If it is a prime number then it verifies the
property. If it is not a prime number, then it can be written as
the product of two positive integers, n + 1 = ki ko, such that
1 < ki,ks < n+ 1. By induction hypothesis each of k; and
ko must be a prime or a product of primes, hence n + 1 is a
product of primes.

This completes the proof.

4.2.3. The Well-Ordering Principle. Every nonempty set of
positive integers has a smallest element.

Ezxample: Prove that V/2 is irrational (i.e., V/2 cannot be written as
a quotient of two positive integers) using the well-ordering principle.
Answer: Assume that /2 is rational, i.e., v2 = a/b, where a and
b are integers. Note that since V2 > 1 then a > b. Now we have
2 = a?/V?, hence 2b®> = a?. Since the left hand side is even, then
a® is even, but this implies that a itself is even, so a = 2a’. Hence:
202 = 44’%, and simplifying: b2 = 2a’®. From here we see that v/2 =
b/a'. Hence starting with a fractional representation of v2 = a/b
we end up with another fractional representation v/2 = b/a’ with a
smaller numerator b < a. Repeating the same argument with the
fraction b/a’ we get another fraction with an even smaller numerator,
and so on. So the set of possible numerators of a fraction representing
V2 cannot have a smallest element, contradicting the well-ordering
principle. Consequently, our assumption that /2 is rational has to be
false.

4.3. RECURRENCE RELATIONS 65

4.3. Recurrence Relations

Here we look at recursive definitions under a different point of view.
Rather than definitions they will be considered as equations that we
must solve. The point is that a recursive definition is actually a def-
inition when there is one and only one object satisfying it, i.e., when
the equations involved in that definition have a unique solution. Also,
the solution to those equations may provide a closed-form (explicit)
formula for the object defined.

The recursive step in a recursive definition is also called a recurrence
relation. We will focus on kth-order linear recurrence relations, which
are of the form

Coxn+Cr2p 1 +Coxp o+ +Crapi =by,

where Cy # 0. If b, = 0 the recurrence relation is called homogeneous.
Otherwise it is called non-homogeneous.

The basis of the recursive definition is also called initial conditions
of the recurrence. So, for instance, in the recursive definition of the
Fibonacci sequence, the recurrence is

Fo=F, 1+ F,»
or
F,—F,1—F, =0,
and the initial conditions are
=0, Fi=1.
One way to solve some recurrence relations is by iteration, i.e., by

using the recurrence repeatedly until obtaining a explicit close-form
formula. For instance consider the following recurrence relation:

Tp =TTp_1 (n>0); rg=A.
By using the recurrence repeatedly we get:
_ a2 .3 _ _.n _ n
Tp =TXp | =T Tpo=1"Typ3="--=71"T9=Ar",
hence the solution is z,, = Ar™.

In the following we assume that the coefficients Cy, C, ..., C} are
constant.

4.3. RECURRENCE RELATIONS 66

4.3.1. First Order Recurrence Relations. The homogeneous
case can be written in the following way:

Ty =1Tu1 (n>0); x9=A.
Its general solution is
T, = Ar",
which is a geometric sequence with ratio r.
The non-homogeneous case can be written in the following way:
Ty =TTp 1+, (n>0); x9=A.

Using the summation notation, its solution can be expressed like this:

n
Ty =Ar" 4 E cpr"h
k=1

We examine two particular cases. The first one is
Ty =TTp1+c (n>0) x9=A.
where c is a constant. The solution is
r*—1

r —

xn:Ar”—i—ch"’k:Ar”—l—c ifr#1,
k=1

and

T, =A4+cn ifr=1.

FExample: Assume that a country with currently 100 million people
has a population growth rate (birth rate minus death rate) of 1% per
year, and it also receives 100 thousand immigrants per year (which
are quickly assimilated and reproduce at the same rate as the native
population). Find its population in 10 years from now. (Assume that
all the immigrants arrive in a single batch at the end of the year.)

Answer: If we call x,, = population in year n from now, we have:
z, = 1.012,_1 + 100,000 (n > 0); xo = 100, 000, 000 .
This is the equation above with r = 1.01, ¢ = 100,000 and A =
100, 000, 00, hence:
1.01" — 1

1.01 -1
= 100, 000, 000 - 1.01™ 4 1000 (1.01™ — 1).

x, = 100,000,000 - 1.01™ 4 100, 000

4.3. RECURRENCE RELATIONS 67
So:
210 = 110,462, 317 .

The second particular case is for r = 1 and ¢, = ¢ + dn, where ¢
and d are constant (so ¢, is an arithmetic sequence):

Ty =2Zp1+c+dn (n>0); xo=A.
The solution is now
& dn(n+1)
n=A dk)=A _
x +§ (c+dk) +cn+ 5

k=1

4.3.2. Second Order Recurrence Relations. Now we look at
the recurrence relation

Oown + Cl Tpn_1+ CQ Tp—o = 0.

First we will look for solutions of the form x,, = c¢r™. By plugging in
the equation we get:

Cocr"+Crer™ t+Cher™? =0,

hence r must be a solution of the following equation, called the char-
acteristic equation of the recurrence:

COT2+01T+02:0.

Let 71, 75 be the two (in general complex) roots of the above equation.
They are called characteristic roots. We distinguish three cases:

1. Distinct Real Roots. In this case the general solution of the
recurrence relation is

Ty =0C17] +CaTy
where ¢y, ¢y are arbitrary constants.

2. Double Real Root. If r;1 = ro = r, the general solution of the
recurrence relation is

Tp=c17" +canr”,
where ¢y, ¢y are arbitrary constants.

3. Complex Roots. In this case the solution could be expressed
in the same way as in the case of distinct real roots, but in

4.3. RECURRENCE RELATIONS 68
order to avoid the use of complex numbers we write r; = 7 e,
ro =1e % ki = c1 + o, ky = (c1 — ¢) i, which yields:
Ty = k11" cosna + ke r" sinno.
FExample: Find a closed-form formula for the Fibonacci sequence
defined by:
Foan=F,+F,1 (n>0); =0, Fi=1.
Answer: The recurrence relation can be written
F,—F,1—F,>,=0.
The characteristic equation is

P—r—1=0.
Its roots are:?
1++5 P

They are distinct real roots, so the general solution for the recurrence
is:

=

Fn = C QS” + o (_¢—1)n .
Using the initial conditions we get the value of the constants:
{(n:()) a1+ e =0 ${Cl - 1/\5
(n=1) a¢te(-9") =1 ¢ = —1/V5
Hence:

1 n —n
Fo= 2 0" = (0"}

IRemainder: e® = cosa + i sin a.
2¢ = % is the Golden Ratio.

CHAPTER 5

Counting

5.1. Basic Principles

5.1.1. The Rule of Sum. If a task can be performed in m ways,
while another task can be performed in n ways, and the two tasks
cannot be performed simultaneously, then performing either task can
be accomplished in m + n ways.

Set theoretical version of the rule of sum: If A and B are disjoint
sets (AN B = () then
|AU B| = |A| + |B].
More generally, if the sets Ay, Ao, ..., A, are pairwise disjoint, then:
|AT U A U---UA,| = AL + |Ao| + - + A,

For instance, if a class has 30 male students and 25 female students,
then the class has 30 + 25 = 45 students.

5.1.2. The Rule of Product. If a task can be performed in m
ways and another independent task can be performed in n ways, then
the combination of both tasks can be performed in mn ways.

Set theoretical version of the rule of product: Let A x B be the
Cartesian product of sets A and B. Then:
[Ax B| = |A]-|BI.
More generally:
|A; X Ay X -+- X A, = |Aq] - |As] -+ Ay

For instance, assume that a license plate contains two letters fol-
lowed by three digits. How many different license plates can be printed?
Answer: each letter can be printed in 26 ways, and each digit can be
printed in 10 ways, so 26 - 26 - 10 - 10 - 10 = 676000 different plates can

be printed.
69

5.1. BASIC PRINCIPLES 70

Ezercise: Given a set A with m elements and a set B with n ele-
ments, find the number of functions from A to B.

5.1.3. The Inclusion-Exclusion Principle. The inclusion-exclusion
principle generalizes the rule of sum to non-disjoint sets.
In general, for arbitrary (but finite) sets A, B:
|AUB| = |A|+ |B| - |ANB|.

Example: Assume that in a university with 1000 students, 200 stu-
dents are taking a course in mathematics, 300 are taking a course in
physics, and 50 students are taking both. How many students are
taking at least one of those courses?

Answer: If U = total set of students in the university, M = set
of students taking Mathematics, P = set of students taking Physics,
then:

IMUP| =|M|+|P| — |M N P| =300 + 200 — 50 = 450

students are taking Mathematics or Physics.

For three sets the following formula applies:
|JAUBUC| =
|A|+|B|+|C|—|ANB|—|ANC|—=|BNC|+|ANnBNCY,
and for an arbitrary union of sets:
Ay UA U UA, | =81 —Sg+S3—8Sa+-+-E 8y,

where s, = sum of the cardinalities of all possible k-fold intersections
of the given sets.

5.2. COMBINATORICS 71

5.2. Combinatorics

5.2.1. Permutations. Assume that we have n objects. Any ar-
rangement of any k of these objects in a given order is called a per-
mutation of size k. If k = n then we call it just a permutation of the
n objects. For instance, the permutations of the letters a, b, c are the
following: abe, acb, bac, beca, cab, cba. The permutations of size 2 of
the letters a, b, c,d are: ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc.

Note that the order is important. Given two permutations, they
are considered equal if they have the same elements arranged in the
same order.

We find the number P(n, k) of permutations of size k of n given
objects in the following way: The first object in an arrangement can
be chosen in n ways, the second one in n — 1 ways, the third one in
n — 2 ways, and so on, hence:

(k factors) n!

P(n,k)=nx (n—1) x X(n—k—i-l):m,

(n factors) . .
where n! =1 x2x3x .- " xniscalled “n factorial”.

The number P(n, k) of permutations of n objects is
P(n,n) =n!.
By convention 0! = 1.

For instance, there are 3! = 6 permutations of the 3 letters a, b, c.
The number of permutations of size 2 of the 4 letters a, b, ¢, d is P(4,2) =
4 x3=12.

Exercise: Given a set A with m elements and a set B with n ele-
ments, find the number of one-to-one functions from A to B.

5.2.2. Combinations. Assume that we have a set A with n ob-
jects. Any subset of A of size r is called a combination of n ele-
ments taken r at a time. For instance, the combinations of the letters
a,b,c,d, e taken 3 at a time are: abc, abd, abe, acd, ace, ade, bed, bee,
bde, cde, where two combinations are considered identical if they have
the same elements regardless of their order.

5.2. COMBINATORICS 72

The number of subsets of size r in a set A with n elements is:

n!
C(n,r) = =)l

The symbol (") (read “n choose r”) is often used instead of C(n,r).

One way to derive the formula for C(n,r) is the following. Let A
be a set with n objects. In order to generate all possible permutations
of size r of the elements of A we 1) take all possible subsets of size
r in the set A, and 2) permute the k elements in each subset in all
possible ways. Task 1) can be performed in C(n,r) ways, and task
2) can be performed in P(r,r) ways. By the product rule we have
P(n,r) = C(n,r) x P(r,r), hence
P(n,r) n!

P(r,r) rl(n—r)"

C(n,r) =

5.3. GENERALIZED PERMUTATIONS AND COMBINATIONS 73

5.3. Generalized Permutations and Combinations

5.3.1. Permutations with Repeated Elements. Assume that
we have an alphabet with k letters and we want to write all possible
words containing n; times the first letter of the alphabet, ny times the

second letter,..., n; times the kth letter. How many words can we
write? We call this number P(n;ni, ng,...,ng), where n = ny + ny +
PPN + nk'

FExample: With 3 a’s and 2 b’s we can write the following 5-letter
words: aaabb, aabab, abaab, baaab, aabba, ababa, baaba, abbaa, babaa,
bbaaa.

We may solve this problem in the following way, as illustrated with
the example above. Let us distinguish the different copies of a letter
with subscripts: ajasasbibs. Next, generate each permutation of this
five elements by choosing 1) the position of each kind of letter, then 2)
the subscripts to place on the 3 a’s, then 3) these subscripts to place on
the 2 b’s. Task 1) can be performed in P(5;3,2) ways, task 2) can be
performed in 3! ways, task 3) can be performed in 2!. By the product
rule we have 5! = P(5;3,2) x 3! x 2!, hence P(5;3,2) = 5!/3!2!.

In general the formula is:

n!
P(n;nl,nz,...,nk):—l ‘ z
ny-ng: ... Ng:

5.3.2. Combinations with Repetition. Assume that we have a
set A with n elements. Any selection of r objects from A, where each
object can be selected more than once, is called a combination of n
objects taken r at a time with repetition. For instance, the combinations
of the letters a, b, c,d taken 3 at a time with repetition are: aaa, aab,
aac, aad, abb, abc, abd, acc, acd, add, bbb, bbc, bbd, bee, bed, bdd, cce, ccd,
cdd, ddd. Two combinations with repetition are considered identical
if they have the same elements repeated the same number of times,
regardless of their order.

Note that the following are equivalent:

1. The number of combinations of n objects taken r at a time with
repetition.

5.3. GENERALIZED PERMUTATIONS AND COMBINATIONS 74

2. The number of ways r identical objects can be distributed among
n distinct containers.

3. The number of nonnegative integer solutions of the equation:

1 +xo+-+ Ty =1

Ezample: Assume that we have 3 different (empty) milk containers
and 7 quarts of milk that we can measure with a one quart measuring
cup. In how many ways can we distribute the milk among the three
containers? We solve the problem in the following way. Let 1, x2, x3 be
the quarts of milk to put in containers number 1, 2 and 3 respectively.
The number of possible distributions of milk equals the number of non
negative integer solutions for the equation z; + x5 + x3 = 7. Instead
of using numbers for writing the solutions, we will use strokes, so for
instance we represent the solution x1 = 2,20 =1, 23 =4, or 2+ 1+ 4,
like this: ||+ |+]|||. Now, each possible solution is an arrangement of 7
strokes and 2 plus signs, so the number of arrangements is P(9;7,2) =
91/7121 = (2).

The general solution is:

Pn+r—1rn—1)=

(n+r—11 (ntr—1
__()

rl(n—1)! r

5.4. BINOMIAL COEFFICIENTS 75

5.4. Binomial Coefficients

5.4.1. Binomial Theorem. The following identities can be easily
checked:

(z+y)° =1

(r+y)=x+y
(z4+y)* =2 +2zy + 9

(v +19)* =2 +32%y + 3zy° + ¢°

They can be generalized by the following formula, called the Binomial
Theorem:

(z+y)" = Zn: <Z) a" iyt

k=0

We can find this formula by writing

(+y)" = +y) x @ry) x " x @ ty),

expanding, and grouping terms of the form z%®. Since there are n
factors of the form (z + y), we have a + b = n, hence the terms must
be of the form x"*y*. The coefficient of 2" *y* will be equal to the
number of ways in which we can select the y from any k of the factors
(and the x from the remaining n — k factors), which is C(n, k) = (7).

The expression (Z) is often called binomial coefficient.
Ezxercise: Prove

Xn: (Z) —9" and i(_l)k(Z) = 0.

k=0 k=0
Hint: Apply the binomial theorem to (1 + 1) and (1 — 1)

5.4.2. Properties of Binomial Coefficients. The binomial co-
efficients have the following properties:

()= (")

5.4. BINOMIAL COEFFICIENTS 76
5 n-+1 _(n n n
“\k+1) \k k41

|
The first property follows easily from (Z) = n

Kl(n —k)!

The second property can be proved by choosing a distinguished
element a in a set A of n + 1 elements. The set A has (Z*i) subsets
of size k + 1. Those subsets can be partitioned into two classes: that
of the subsets containing a, and that of the subsets not containing a.
The number of subsets containing a equals the number of subsets of
A —{a} of size k, i.e., (}). The number of subsets not containing a is

the number of subsets of A — {a} of size k + 1, i.e., (kil) Using the

sum principle we find that in fact (Zﬁ) = (Z) + (kzl)

5.4.3. Pascal’s Triangle. The properties shown in the previous
section allow us to compute binomial coefficients in a simple way. Look
at the following triangular arrangement of binomial coefficients:

(o)

We notice that each binomial coefficient on this arrangement must
be the sum of the two closest binomial coefficients on the line above it.
This together with (g) = (Z) = 1, allows us to compute very quickly
the values of the binomial coefficients on the arrangement:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

This arrangement of binomial coefficients is called Pascal’s Trian-

gle.t

L Although it was already known by the Chinese in the XIV century.

5.5. THE PIGEONHOLE PRINCIPLE 7

5.5. The Pigeonhole Principle

5.5.1. The Pigeonhole Principle. The pigeonhole principle is
used for proving that a certain situation must actually occur. It says
the following: If n pigeonholes are occupied by m pigeons and m > n,
then at least one pigeonhole is occupied by more than one pigeon.t

Example: In any given set of 13 people at least two of them have
their birthday during the same month.

FExample: Let S be a set of eleven 2-digit numbers. Prove that
S must have two elements whose digits have the same difference (for
instance in S = {10, 14,19, 22, 26, 28,49, 53, 70,90, 93}, the digits of
the numbers 28 and 93 have the same difference: 8 —2 =6, 9 — 3 =
6.) Answer: The digits of a two-digit number can have 10 possible
differences (from 0 to 9). So, in a list of 11 numbers there must be two
with the same difference.

Example: Assume that we choose three different digits from 1 to
9 and write all permutations of those digits. Prove that among the
3-digit numbers written that way there are two whose difference is a
multiple of 500. Answer: There are 9 -8 -7 = 504 permutations of
three digits. On the other hand if we divide the 504 numbers by 500
we can get only 500 possible remainders, so at least two numbers give
the same remainder, and their difference must be a multiple of 500.

Ezxercise: Prove that if we select n 4+ 1 numbers from the set S =
{1,2,3,...,2n}, among the numbers selected there are two such that
one is a multiple of the other one.

IThe Pigeonhole Principle (Schubfachprinzip) was first used by Dirichlet in
Number Theory. The term pigeonhole actually refers to one of those old-fashioned
writing desks with thin vertical wooden partitions in which to file letters.

CHAPTER 6

Probability

6.1. Probability

6.1.1. Introduction. Assume that we perform an experiment such
as tossing a coin or rolling a die. The set of possible outcomes is called
the sample space of the experiment. An event is a subset of the sample
space. For instance, if we toss a coin three times, the sample space is

S={HHH,HHT,HTH, HTT,THH,THT, TTH,TTT}.
The event “at least two heads in a row” would be the subset
E={HHH,HHT,THH} .

If all possible outcomes of an experiment have the same likelihood of
occurrence, then the probability of an event A C 8 is given by Laplace’s
rule:

_ Il

5]

For instance, the probability of getting at least two heads in a row in
the above experiment is 3/8.

P(E)

6.1.2. Probability Function. In general the likelihood of differ-
ent outcomes of an experiment may not be the same. In that case
the probability of each possible outcome z is a function P(z). This
function verifies:

0<Px)<1l forallzesS

and

> Pla)=1.

€S
The probability of an event £ C S will be

P(E)=)_P(x)

zeE
78

6.1. PROBABILITY 79

FExample: Assume that a die is loaded so that the probability of
obtaining n point is proportional to n. Find the probability of getting
an odd number when rolling that die.

Answer: First we must find the probability function P(n) (n =
1,2,...,6). We are told that P(n) is proportional to n, hence P(n) =
kn. Since P(S) = 1 we have P(1)+P(2)+--- P(6) = 1,1e., k-1+k-2+
oo+ k-6=21k=1,s0k=1/21 and P(n) = n/21. Next we want to
find the probability of £ = {2,4,6}, i.e. P(E) = P(2)+ P(4)+ P(6) =

2 4 6 12
o1 "21 21 |21

6.1.3. Properties of probability. Let P be a probability func-
tion on a sample space S. Then:

1. For every event £ C S,
0< P(E)<1.

2. P(0) =0, P(S)=1.
3. For every event E C S, if £ = is the complement of £ (“not
E”) then
P(E)=1-P(E).
4. If B4, E5 C S are two events, then
P(E1UEy) = P(Ey) 4+ P(Es) — P(E1 N Es) .

In particular, if £y N Ey = () (Ey and Ey are mutually exclusive,
i.e., they cannot happen at the same time) then

P(EL U Ey) = P(E)) + P(Es).

Example: Find the probability of getting a sum different from 10 or
12 after rolling two dice. Answer: We can get 10 in 3 different ways:
446, 5+5, 6+4, so P(10) = 3/36. Similarly we get that P(12) = 1/36.
Since they are mutually exclusive events, the probability of getting 10
or 121is P(10)+ P(12) = 3/36+1/36 = 4/36 = 1/9. So the probability
of not getting 10 or 12is 1 —1/9 = 8/9.

6.1.4. Conditional Probability. The conditional probability of
an event F given F', represented P(E | F'), is the probability of F
assuming that [’ has occurred. It is like restricting the sample space
to F'. Its value is
P(ENF)

P(E|F) = o)

6.1. PROBABILITY 80

FExample: Find the probability of obtaining a sum of 10 after rolling
two fair dice. Find the probability of that event if we know that at least
one of the dice shows 5 points.

Answer: We call E = “obtaining sum 10” and F' = “at least one of
the dice shows 5 points”. The number of possible outcomes is 6 x 6 =
36. The event “obtaining a sum 10” is £ = {(4,6),(5,5),(6,4)}, so
|E| = 3. Hence the probability is P(E) = |E|/|S| = 3/36 = 1/12.
Now, if we know that at least one of the dice shows 5 points then the
sample space shrinks to

F= {(175)7 (27 5)a (375)7 (47 5)7 <5a 5)’ (675)7 (57 1>a (5’2)7 (573)7 (5a4)’ (576)}7

so |F| = 11, and the ways to obtain a sum 10 are E N F = {(5,5)},
|ENF| =1, so the probability is P(E | F') = P(ENF)/P(F) =1/11.

6.1.5. Independent Events. Two events F and F' are said to be
independent if the probability of one of them does not depend on the
other, e.g.:

P(E | F)=P(E).
In this circumstances:

P(ENF)=P(E)-P(F).

Note that if F is independent of F' then also F' is independent of F,
e.g.,, P(F | E)= P(F).

Example: Assume that the probability that a shooter hits a target
is p = 0.7, and that hitting the target in different shots are independent
events. Find:

1. The probability that the shooter does not hit the target in one
shot.

2. The probability that the shooter does not hit the target three
times in a row.

3. The probability that the shooter hits the target at least once
after shooting three times.

Answer:

1. P(not hitting the target in one shot) =1 — 0.7 = 0.3.

2. P(not hitting the target three times in a row) = 0.3* = 0.027.

3. P(hitting the target at least once in three shots) = 1—0.027 =
0.973.

6.1. PROBABILITY 81

6.1.6. Bayes’ Theorem. Suppose that a sample space S' is parti-
tioned into n classes C1, Cs, . .., C, which are pairwise mutually exclu-
sive and whose union fills the whole sample space. Then for any event
F we have

P(F) =) P(F|Ci) P(C)

and
F|C;) P(C))

P(F)

(e, | F) =2

Example: In a country with 100 million people 100 thousand of
them have disease X. A test designed to detect the disease has a 99%
probability of detecting it when administered to a person who has it,
but it also has a 5% probability of giving a false positive when given to
a person who does not have it. A person is given the test and it comes
out positive. What is the probability that that person has the disease?

Answer: The classes are C; = “has the disease” and Cy = “does
not have the disease”, and the event is F' = “the test gives a positive”.
We have: |S| = 100,000,000, |C;] = 100,000, |C3] = 99,900,000,
hence P(Cy) = |C1]/]S| = 0.001, P(Cy) = |Cs|/|S| = 0.999. Also
P(F | Cy)=0.99, P(F | Cy) = 0.05. Hence:

P(F) = P(F | Cy)- P(C1) + P(F | Cy) - P(Cy)
=0.99-0.001 4+ 0.05 - 0.999 = 0.05094 ,

and by Bayes’ theorem:
P(F|Cy)-P(Cy) 0.99-0.001
P(F) ~0.05004
=0.019434628 - - - ~ 2% .
(So the test is really of little use when given to a random person—

however it might be useful in combination with other tests or other
evidence that the person might have the disease.)

P(CI‘F):

CHAPTER 7

Graph Theory

7.1. Graphs

7.1.1. Graphs. Consider the following examples:

1. A road map, consisting of a number of towns connected with
roads.

2. The representation of a binary relation defined on a given set.
The relation of a given element = to another element y is rep-
resented with an arrow connecting x to y.

The former is an example of (undirected) graph. The latter is an
example of a directed graph or digraph.

a b

d C

F1GURE 7.1. Undirected Graph.

In general a graph G consists of two things:

1. The wvertex set V', whose elements are called vertices, nodes or
points.

2. The edge set E or set of edges connecting pairs of vertices. If
the edges are directed then they are also called directed edges
or arcs. Each edge e € F is associated with a pair of vertices.

82

7.1. GRAPHS 83

d c
F1GURE 7.2. Directed Graph.

A graph is sometimes represented by the pair (V, E) (we assume V
and FE finite).

If the graph is undirected and there is a unique edge e connecting x
and y we may write e = {x, y}, so E can be regarded as set of unordered
pairs. In this context we may also write e = (x,y), understanding that
here (x,y) is not an ordered pair, but the name of an edge.

If the graph is directed and there is a unique edge e pointing from
x to y, then we may write e = (x,y), so E may be regarded as a set
of ordered pairs. If e = (x,y), the vertex x is called origin, source or
initial point of the edge e, and y is called the terminus, terminating
vertex or terminal point.

a

d c
FiGURE 7.3. Graph with parallel edges.

Two vertices connected by an edge are called adjacent. They are
also the endpoints of the edge, and the edge is said to be incident to
each of its endpoints. If the graph is directed, an edge pointing from
vertex x to vertex y is said to be incident from x and incident to y. An
edge connecting a vertex to itself is called a loop. Two edges connecting
the same pair of points (and pointing in the same direction if the graph
is directed) are called parallel or multiple.

7.1. GRAPHS 84

A graph with neither loops nor multiple edges is called a simple
graph. If a graph has multiple edges but no loops then it is called a
multigraph. 1f it has loops (and possible also multiple edges) then it is
called a pseudograph.

The following table summarizes the graph terminology

TABLE 7.1.1. Graph Terminology

Type Edges Multiple Edges Allowed? | Loops Allowed?
Simple graph indirected no no
Multigraph indirected yes no
Pseudograph indirected yes yes
Directed graph directed no yes
Directed multigraph | directed yes yes

The degree of a vertex v, represented deg(v), is the number of edges
that contain it (loops are counted twice). A vertex of degree zero (not
connected to any other vertex) is called isolated. A vertex of degree 1
is called pendant.

The Handshaking Theorem. Let G = (V, E) be an undirected graph
with e edges. Then
2e = Z deg (v) .
veV
(This applies even if multiple edges and loops are present.)

In a graph with directed edges, the in-degree of a vertex v, denoted
deg™(v), is the number of edges with v as their terminal vertex. The
out-degree of a vertex v, denoted deg™ (v), is the number of edges with
v as their initial vertex. (Note that a loop at a vertex contributes 1 to
both the in-degree and the out-degree of this vertex.)

Number of vertices of odd degree. An undirected graph has an even
number of vertices of odd degree. Proof: Let V, and V, respectively
the set of vertices of even degree and the set of vertices of odd degree
in an undirected graph G = (V, E)). Then

2e = Zdeg (v) = Z deg (v) + Z deg (v) .

veV veEVe veV,

Since deg(v) is even for v € V., the first sum in the right hand side of
the equality is even. The total sum must be 2e, which is even, so the
second sum must be even too. But its terms are all odd, so there must
be an even number of them.

7.1. CRAPHS 85
Sum of degrees in an directed graph. Let G = (V, E) be a directed
graph. Then
S deg™ (v) = S deg” () = | .
veV veV

A weighted graph is a graph whose edges have been labeled with
numbers. The length of a path in a weighted graph is the sum of the
weights of the edges in the path.

a b
7
6
6 3
d 4 c

FI1GURE 7.4. Weighted Graph.

7.1.2. Special Graphs. Here we examine a few special graphs.

The n-cube: A graph with with 2" vertices labeled 0,1,...,2" — 1
so that two of them are connected with an edge if their binary repre-
sentation differs in exactly one bit.

110 111

010 011

100 101

000 001

FiGURE 7.5. 3-cube.

Complete Graph: a simple undirected graph G such that every pair
of distinct vertices in G' are connected by an edge. The complete graph
of n vertices is represented K, (fig. 7.6). A complete directed graph is
a simple directed graph G = (V, E) such that every pair of distinct
vertices in G are connected by exactly one edge—so, for each pair of
distinct vertices, either (x,y) or (y,x) (but not both) is in FE.

7.1. GRAPHS 86

a
emb
d c

F1GURE 7.6. Complete graph K.

Bipartite Graph: a graph G = (V, E') in which V' can be partitioned
into two subsets V] and V5 so that each edge in G connects some vertex
in Vi to some vertex in V5. A bipartite simple graph is called complete
if each vertex in V; is connected to each vertex in V5. If |V;| = m and
|Va| = n, the corresponding complete bipartite graph is represented

Ko (fig. 7.7).

A graph is bipartite iff its vertices can be colored with two colors
so that every edge connects vertices of different color.

Question: Is the n-cube bipartite. Hint: color in red all vertices
whose binary representation has an even number of 1’s; color in blue
the ones with an odd number of 1’s.

p
q
b
r
c
s

FIGURE 7.7. Complete bipartite graph Ks 4.

Regular Graph: a simple graph whose vertices have all the same
degree. For instance, the n-cube is regular.

7.1.3. Subgraph. Given a graph G = (V| E), a subgraph G' =
(V') E") of G is another graph such that V/ C V and E' C E. If
V' =V then G’ is called a spanning subgraph of G.

7.1. GRAPHS 87

Given a subset of vertices U C V, the subgraph of G induced by
U, denoted (U), is the graph whose vertex set is U, and its edge set
contains all edges from G connecting vertices in U.

7.2. REPRESENTATIONS OF GRAPHS 88

7.2. Representations of Graphs

7.2.1. Adjacency matrix. The adjacency matriz of a graph is a
matrix with rows and columns labeled by the vertices and such that
its entry in row ¢, column 7, 7 # 7, is the number of edges incident on ¢
and j. For instance the following is the adjacency matrix of the graph
of figure 7.8:1

—_— 0 O =
~_

QU O

— o) O 2
OO = o
oo O

b
e2
a C
e4

e5
d

FIGURE 7.8

One of the uses of the adjacency matrix A of a simple graph G is
to compute the number of paths between two vertices, namely entry
(i,7) of A™ is the number of paths of length n from i to j.

7.2.2. Incidence matrix. The incidence matrix of a graph G is a
matrix with rows labeled by vertices and columns labeled by edges, so
that entry for row v column e is 1 if e is incident on v, and 0 otherwise.

As an example, the following is the incidence matrix of graph of figure
7.8:

1For some authors if i = j then the entry is twice the number of loops incident
on 7; so in the example of figure 7.8 entry (d,d) would be 2 instead of 1.

7.2. REPRESENTATIONS OF GRAPHS 89

a (1 0 0 1 O
b |1 1 1 0 0
c |10 1 1 0 0
d \0 0 0 1 1

7.2.3. Graph Isomorphism. Two graphs G; = (V3, Ey), Gy =
(Va, Ey), are called isomorphic if there is a bijection f : V; — V; and a
bijection g : B4y — FEs such that an edge e is adjacent to vertices v and
w if and only if g(e) is adjacent to f(v) and f(w) (fig. 7.9).

al bl a2 bz

d2

el
cl e2 c2

dl

FI1GURE 7.9. Two isomorphic graphs.

Two graphs are isomorphic if and only if for some ordering of their
vertices their adjacency matrices are equal.

An invariant is a property such that if a graph has it then all graphs
isomorphic to it also have it. Examples of invariants are their number
of vertices, their number of edges, “has a vertex of degree k7, “has a
simple cycle of length [”, etc. It is possible to prove that two graphs are
not isomorphic by showing an invariant property that one has and the
other one does not have. For instance the graphs in figure 7.10 cannot
be isomorphic because one has a vertex of degree 2 and the other one
doesn’t.

7.2. REPRESENTATIONS OF GRAPHS 90

FI1GURE 7.10. Non isomorphic graphs.

7.3. PATHS AND CIRCUITS 91

7.3. Paths and Circuits

7.3.1. Paths. A path from vy to v, of length n is a sequence of
n+1 vertices (vy) and n edges (ex) of the form vy, €1, vy, €2, Vg, . . . , €4, Uy,
where each edge e, connects v,_; with v (and points from vg_; to vy
if the edge is directed). The path may be specified by giving only the
sequence of edges eq,...,e,. If there are no multiple edges we can
specify the path by giving only the vertices: vy, v1,...,v,. The path
is a circuit (or cycle) if it begins and ends at the same vertex, i.e.,
vp = vUp, and has lenght greater than zero. A path or circuit is simple
if it does not contain the same edge twice.

7.3.2. Connected Graphs. A graph G is called connected if there
is a path between any two distinct vertices of GG. Otherwise the graph
is called disconnected. A directed graph is connected if its associated
undirected graph (obtained by ignoring the directions of the edges) is
connected. A directed graph is strongly connected if for every pair of
distict points u, v, there is a path from u to v and there is a path
from v to u. A connected component of GG is any connected subgraph
G' = (V',E') of G = (V, E) such that there is not edge (in G) from a
vertex in V' to a vertex in V — V', Given a vertex in G, the component
of G containing v is the subgraph G’ of G consisting of all edges and
vertices of g contained in some path beginning at v.

7.3.3. The Seven Bridges of Konigsberg. This is a classical
problem that started the discipline today called graph theory.

During the eighteenth century the city of Kénigsberg (in East Prus-
sia)! was divided into four sections, including the island of Kneiphop,
by the Pregel river. Seven bridges connected the regions, as shown in
figure 7.11. It was said that residents spent their Sunday walks trying
to find a way to walk about the city so as to cross each bridge exactly
once and then return to the starting point. The first person to solve
the problem (in the negative) was the Swiss mathematician Leonhard
Euler in 1736. He represented the sections of the city and the seven
bridges by the graph of figure 7.12, and proved that it is impossible to
find a path in it that transverses every edge of the graph exactly once.
In the next section we study why this is so.

IThe city is currently called Kaliningrad and is part of the Russian republic.

7.3. PATHS AND CIRCUITS 92

FIGURE 7.11. The Seven Bridges of Konigsberg.

FIGURE 7.12. Graph for the Seven Bridges of Konigsberg.

7.3.4. Euler paths and circuits. Let G = (V, E) be a graph
with no isolated vertices. An Fuler path in G is a simple path that
transverses every edge of the graph exactly once. Analogously, an
FEuler circuit in G is a simple circuit that transverses every edge of the
graph exactly once.

Ezxistence of Fuler Paths and Clircuits. The graphs that have an
Euler path can be characterized by looking at the degree of their ver-
tices. Recall that the degree of a vertex v, represented deg(v), is the
number of edges that contain v (loops are counted twice). An even
vertex is a vertex with even degree; an odd vertex is a vertex with odd
degree. The sum of the degrees of all vertices in a graph equals twice
its number of edges, so it is an even number. As a consequence, the
number of odd vertices in a graph is always even.

Let G be a connected multigraph. Then G contains an Euler circuit
if and only if G its vertices have even degree. Also, G contains an Euler
path from vertex a to vertex b (# a) if and only if a and b have odd
degree, and all its other vertices have even degree.

7.3. PATHS AND CIRCUITS 93

7.3.5. Hamilton Circuits. A Hamilton circuit in a graph G is
a circuit that contains each vertex of G' once (except for the starting
and ending vertex, which occurs twice). A Hamilton path in G is a
path (not a circuit) that contains each vertex of G once. Note that by
deleting an edge in a Hamilton circuit we get a Hamilton path, so if a
graph has a Hamilton circuit, then it also has a Hamilton path. The
converse is not true, i.e., a graph may have a Hamilton path but not
a Hamilton circuit. Fzxercise: Find a graph with a Hamilton path but
no Hamilton circuit.

a e

.

Cc

FI1GURE 7.13. Hamilton’s puzzle.

In general it is not easy to determine if a given graph has a Hamilton
path or circuit, although often it is possible to argue that a graph has no
Hamilton circuit. For instance if G = (V, E) is a bipartite graph with
vertex partition {Vj, V2} (so that each edge in G connects some vertex
in V] to some vertex in V3), then G cannot have a Hamilton circuit if
|V1| # |V, because any path must contain alternatively vertices from
Vi and Vs, so any circuit in G must have the same number of vertices
from each of both sets.

FEdge removal argument. Another kind of argument consists of re-
moving edges trying to make the degree of every vertex equal two. For
instance in the graph of figure 7.14 we cannot remove any edge because
that would make the degree of b, e or d less than 2, so it is impossi-
ble to reduce the degree of a and c¢. Consequently that graph has no
Hamilton circuit.

Dirac’s Theorem. If G is a simple graph with n vertices with n > 3
such that the degree of every vertex in G is at least n/2, then G has a
Hamilton circuit.

7.3. PATHS AND CIRCUITS 94

b

d

FIGURE 7.14. Graph without Hamilton circuit.

Ore’s Theorem. If G is a simple graph with n vertices with n > 3
such that deg(u) 4+ deg(v) > n for every pair of nonadjacent vertices u
and v in G, then G has a Hamilton circuit.

The Traveling Salesperson Problem. Given a weighted graph, the
traveling salesperson problem (TSP) consists of finding a Hamilton cir-
cuit of minimum length in this graph. The name comes from a classical
problem in which a salesperson must visit a number of cities and go
back home traveling the minimum distance possible. One way to solve
the problem consists of searching all possible Hamilton circuits and
computing their length, but this is very inefficient. Unfortunately no
efficient algorithm is known for solving this problem (and chances are
that none exists).

Remark: (Digression on P/NP problems.) Given a weighted graph
with n vertices the problem of determining whether it contains a Hamil-
ton circuit of length not greater than a given L is known to be NP-
complete. This means the following. First it is a decision problem, i.e.,
a problem whose solution is “yes” or “no”. A decision problem is said
to be polynomial, or belong to the class P, if it can be solved with an
algorithm of complexity O(n*) for some integer k. It is said to be non-
deterministic polynomial, or belong to the class NP, if in all cases when
the answer is “yes” this can be determined with a non-deterministic
algorithm of complexity O(n*). A non-deterministic algorithm is an
algorithm that works with an extra hint, for instance in the TSP, if
G has a Hamilton circuit of length not greater than L the hint could
consist of a Hamilton circuit with length not greater than L—so the
task of the algorithm would be just to check that in fact that length

7.3. PATHS AND CIRCUITS 95

is not greater than L.2 Currently it is not known whether the class
NP is strictly larger than the class P, although it is strongly suspected
that it is. The class NP contains a subclass called NP-complete con-
taining the “hardest” problems of the class, so that their complexity
must be higher than polynomial unless P=NP. The TSP is one of these
problems.

Gray Codes. A Gray code is a sequence si, Sa, ..., Son of n-binary
strings verifying the following conditions:

1. Every n-binary string appears somewhere in the sequence.
2. Two consecutive strings s; and s;;; differ exactly in one bit.
3. son and sy differ in exactly one bit.

For instance: 000,001,011,010,110,111, 101, 100,

The problem of finding a gray code is equivalent to finding a Hamil-
ton circuit in the n-cube.

7.3.6. Dijkstra’s Shortest-Path Algorithm. This is an algo-
rithm to find the shortest path from a vertex a to another vertex z in
a connected weighted graph. Edge (7,7) has weight w(i,j) > 0, and
vertex x is labeled L(x) (minimum distance from a if known, otherwise
o0). The output is L(z) = length of a minimum path from a to z.

1: procedure dijkstra(w,a,z,L)

2 L(a) :=0

3: for all vertices x # a

4: L(x) := o0

5: T := set of all vertices

6: {T is the set of all vertices whose shortest}
7: {distance from a has not been found yet}
8: whilez in T

9: begin

10: choose v in T with minimum L(v)

11: T :=T - {v}

12: for each x in T adjacent to v

13: L(x) := min{L(x),L(v)+w(v,x)}

2Inforrnadly7 P problems are “easy to solve”, and NP problems are problems
whose answer is “easy to check”. In a sense the P=NP problem consist of de-
termining whether every problem whose solution is easy to check is also easy to
solve.

7.3. PATHS AND CIRCUITS 96

14: end
15: return L(z)
16: end dijkstra

For instance consider the graph in figure 7.15.

b 1 (o
2 2 3
... z
3 d 1
4 4

FIGURE 7.15. Shortest path from a to z.

The algorithm would label the vertices in the following way in each
iteration (the boxed vertices are the ones removed from 7T'):

iteration | a | b | ¢ | d | e | f| z
0 0 |oco|oo|oo|oo|00| 00
1 5200340000
2 0][[2]] 3|3 |4 |oc0| 0
3 o][[2][3]] 3| 4 |occ]| 6
4 |10} [2]][3]|[3]] 4 oo | 4
5 |[0)][2]|[3]][3]|[4]| 6| 4
6 [[o]][2]|[3]][3][[4]] 6 |[4]

At this point the algorithm returns the value 4.

Complexity of Digkstra’s algorithm. For an n-vertex, simple, con-
nected weighted graph, Dijkstra’s algorithm has a worst-case run time

of ©(n?).

7.4. PLANAR GRAPHS 97

7.4. Planar Graphs

7.4.1. Planar Graphs. A graph G is planar if it can be drawn
in the plane with its edges intersecting at their vertices only. One such
drawing is called an embedding of the graph in the plane.

A particular planar representation of a planar graph is called a map.
A map divides the plane into a number of regions or faces (one of them
infinite).

7.4.2. Graph Homeomorphism. If a graph G has a vertex v of
degree 2 and edges (v,v1), (v,v9) with vy # vy, we say that the edges
(v,v1) and (v,v,) are in series. Deleting such vertex v and replacing
(v,v1) and (v, v9) with (v, vy) is called a series reduction. For instance,
in the third graph of figure 7.16, the edges (h,b) and (h, d) are in series.
By removing vertex h we get the first graph in the left.

The opposite of a series reduction is an elementary subdivision It
consists of replacing an edge (u,v) with two edges (u,w) and (w,v),
where w is a new vertex.

Two graphs are said to be homeomorphic if they are isomorphic or
can be reduced to isomorphic graphs by a sequence of series reductions
(fig. 7.16). Equivalently, two graphs are homeomorphic if they can be
obtained from the same graph by a sequence of elementary subdivisions.

Cc c f c
b d b d b d
a e 3 e d e

FIGURE 7.16. Three homeomorphic graphs.

Note that if a graph G is planar, then all graphs homeomorphic to
G are also planar.

7.4.3. Some Results About Planar Graphs.

7.4. PLANAR GRAPHS 98

1. Euler’s Formula: Let G = (V, F) be a connected planar graph,
and let v = |V, e = |E|, and r = number of regions in which
some given embedding of GG divides the plane. Then:

v—e+r=2.

Note that this implies that all plane embeddings of a given
graph define the same number of regions.

2. Let G = (V,E) be a simple connected planar graph with v
vertices, e > 3 edges and r regions. Then 3r < 2¢ and e <
3v — 6.

3. The graph K35 is non-planar. Proof: in K5 we have v = 5 and
e = 10, hence 3v — 6 = 9 < e = 10, which contradicts the
previous result.

4. The graph K3 3 is non-planar. Proof: in K33 we have v = 6 and
e =9. If K33 were planar, from Euler’s formula we would have
f = 5. On the other hand, each region is bounded by at least
four edges, so 4f < 2e, i.e., 20 < 18, which is a contradiction.

5. Kuratowski’s Theorem: A graph is non-planar if and only if it
contains a subgraph that is homeomorphic to either K5 or Kj 3.

7.4.4. Dual Graph of a Map. A map is defined by some planar
graph G = (V, E') embedded in the plane. Assume that the map divides
the plane into a set of regions R = {ry,79,...,7}. For each region r;,
select a point p; in the interior of ;. The dual graph of that map is the
graph G¢ = (V4, E?), where V¢ = {p1,ps, ..., pi}, and for each edge in
E separating the regions r; and r;, there is an edge in E¢ connecting p;
and p;. Warning: Note that a different embedding of the same graph
G may give different (and non-isomorphic) dual graphs. Ezercise: Find
the duals of the maps shown in figure 7.9, and prove that they are not
isomorphic.

7.4.5. Graph Coloring. Consider the problem of coloring a map
M in such a way that no adjacent regions (sharing a border) have the
same color. This is equivalent to coloring the vertices of the dual graph
of M in such a way that no adjacent vertices have the same color.

In general, a coloring of a graph is an assignment of a color to
each vertex of the graph. The coloring is called proper if there are
no adjacent vertices with the same color. If a graph can be properly

7.4. PLANAR GRAPHS 99

Fi1GURE 7.17. Dual graph of a map.

colored with n colors we say that it is n-colorable. The minimum
number of colors needed to properly color a given graph G = (V, E) is
called the chromatic number of G, and is represented x(G). Obviously
X(G) < V.

7.4.6. Some Results About Graph Coloring.
1. x(K,) =n.

2. Let G be a simple graph. The following statements are equiva-
lent:

(a) x(G) = 2.
(b) G is bipartite.
(c) Every circuit in G has even length

3. Five Color Theorem (Kempe, Heawood) (not hard to prove):
Every simple, planar graph is 5-colorable.

4. Four Color Theorem (Appel and Haken, 1976), proved with
an intricate computer analysis of configurations: Every simple,
planar graph is 4-colorable.

FEzercise: Find a planar graph G such that x(G) = 4.

CHAPTER 8

Trees

8.1. Trees

8.1.1. Terminology. A tree is a connected undirected graph with
no simple circuits.

A rooted tree is a tree in which a particular vertex is designated as
the root and every edge is directed away from the root.

We draw rooted trees with the root at the top. The arrows indicat-
ing the directions of the edges can be omitted.

FIGURE 8.1. A rooted tree.

The level of a vertex v is the length of the simple path from the root
to v. The height of a rooted tree is the maximum level of its vertices.

Let T be a tree with root vy. Suppose that x, y and z are vertices
in T and that (v, v1,...,v,) is a simple path in 7. Then:

Up_1 is the parent of v,.

Vo, V1, - - -, Up_1 are ancestors of v,.

vy, 1s a child of v,,_1.

If x is an ancestor of y, y is a descendant of x.

If x and y are children of z, x and y are siblings.

If x has no children, it is called a terminal vertex or leaf.

SEANL NS .

100

8.1. TREES 101

7. If x is not a terminal vertex, it is an internal or branch vertex.

8. The subtree of T rooted at x is the graph (V, E), where V is «
together with its descendants and E = edges of simple paths
from x to some vertex in F.

8.2. BINARY TREES 102

8.2. Binary Trees

8.2.1. Binary Trees. A binary tree is a rooted tree in which each
vertex has at most two children, designated as left child and right child.
If a vertex has one child, that child is designated as either a left child
or a right child, but not both. A full binary tree is a binary tree in
which each vertex has exactly two children or none. The following are
a few results about binary trees:

1. If T is a full binary tree with ¢ internal vertices, then 7" has ¢+ 1
terminal vertices and 2:¢ + 1 total vertices.

2. If a binary tree of height h has ¢ terminal vertices, then ¢ < 2",

More generally we can define a m-ary tree as a rooted tree in which
every internal vertex has no more than m children. The tree is called
a full m-ary tree if every internal vertex has exactly m children. An
ordered rooted tree is a rooted tree where the children of each internal
vertex are ordered. A binary tree is just a particular case of m-ary
ordered tree (with m = 2).

8.2.2. Binary Search Trees. Assume S is a set in which elements
(which we will call “data”) are ordered; e.g., the elements of S can be
numbers in their natural order, or strings of alphabetic characters in
lexicographic order. A binary search tree associated to S is a binary
tree T in which data from S are associate with the vertices of T" so
that, for each vertex v in 7', each data item in the left subtree of v is
less than the data item in v, and each data item in the right subtree of
v is greater than the data item in v.

FExample: Figure 8.2 contains a binary search tree for the set S =
{1,2,3,4,5,6,7,8,9,10}. In order to find a element we start at the root
and compare it to the data in the current vertex (initially the root).
If the element is greater we continue through the right child, if it is
smaller we continue through the left child, if it is equal we have found
it. If we reach a terminal vertex without founding the element, then
that element is not present in S.

8.2.3. Making a Binary Search Tree. We can store data in a
binary search tree by randomly choosing data from S and placing it in
the tree in the following way: The first data chosen will be the root of
the tree. Then for each subsequent data item, starting at the root we

8.2. BINARY TREES 103
5\\\\\\\\\\
/ 9
2 / \
/ 3\ /7\ 10
4 6 8
FiGURE 8.2. Binary Search Tree.

compare it to the data in the current vertex v. If the new data item is
greater than the data in the current vertex then we move to the right
child, if it is less we move to the left child. If there is no such child
then we create one and put the new data in it. For instance, the tree in
figure 8.3 has been made from the following list of words choosing them
in the order they occur: “IN A PLACE OF LA MANCHA WHOSE
NAME I DO NOT WANT TO REMEMBER”.

A/IN\
\

PLACE

/ ol WHOSE
DO LA/ wzw
N
MANCHA (o)

NAME REMEMBER

NOT

FIGURE 8.3. Another binary Search Tree.

8.3. DECISION TREES, TREE ISOMORPHISMS 104

8.3. Decision Trees, Tree Isomorphisms

8.3.1. Decision Trees. A decision tree is a tree in which each
vertex represents a question and each descending edge from that vertex
represents a possible answer to that question.

Example: The Five-Coins Puzzle. In this puzzle we have five coins
C1, 0y, C5,Cy, C5 that are identical in appearance, but one is either
heavier or lighter that the others. The problem is to identify the bad
coin and determine whether it is lighter or heavier using only a pan
balance and comparing the weights of two piles of coins. The problem
can be solved in the following way. First we compare the weights of
Cy and Cy. If C) is heavier than Cy then we know that either C] is
the bad coin and is heavier, or (5 is the bad coin and it is lighter.
Then by comparing say C; with any of the other coins, say Cs, we can
determine whether the bad coin is C; and is heavier (if C} it is heavier
than C5) or it is Cy and is lighter (if C; has the same weight as C5). If
(] is lighter than C5 we proceed as before with “heavier” and “lighter”
reversed. If C and C5 have the same weight we can try comparing C3
and C} in a similar manner. If their weights are the same then we know
that the bad coin is (5, and we can determine whether it is heavier or
lighter by comparing it to say C;. The corresponding decision tree is
the following:

C1l.Cc2
left right
balanced
CL.CS5 C3.C4 C1.C5
le ‘balanced _ ba|ance$\righ1
ClH c2.L le balanced ight C2H ClL

C3:C5 C1:C5 C3:C5

'e%alL\ncedk?/ Nght baliar@ri\ght

C3H C4L C5L C5H C4H C3L

FIGURE 8.4. Decision tree for the 5 coins puzzle.

In each vertex “Cj : C;” means that we compare coins C; and C;; by
placing C; on the left pan and C; on the right pan of the balance, and
each edge is labeled depending on what side of the balance is heavier.
The terminal vertices are labeled with the bad coin and whether it is
heavier (H) or lighter (L). The decision tree is optimal in the sense
that in the worst case it uses three weighings, and there is no way to
solve the problem with less than that—with two weighings we can get

8.3. DECISION TREES, TREE ISOMORPHISMS 105

at most nine possible outcomes, which are insufficient to distinguish
among ten combinations of 5 possible bad coins and the bad coin being
heavier or lighter.

8.3.2. Complexity of Sorting. Sorting algorithms work by com-
paring elements and rearranging them as needed. For instance we can
sort three elements aq, as, a3 with the decision tree shown in figure 8.5

al<a2?
y %
az2<a3? al<a3?
Y§/ “O YE7/ W
al,az,a3 al<a3? a2,al,a3 a2<a3?
al,a3,a2 a3,al,a2 a2,a3,al a3,a2,al

FIGURE 8.5. Sorting three elements.

Since there are 3! = 6 possible arrangements of 3 elements, we need
a decision tree with at least 6 possible outcomes or terminal vertices.
Recall that in a binary tree of height h with ¢ terminal vertices the
following inequality holds: ¢t < 2". Hence in our case 6 < 2", which
implies h > 3, so the algorithm represented by the decision tree in
figure 8.5 is optimal in the sense that it uses the minimum possible
number of comparisons in the worst-case.

More generally in order to sort n elements we need a decision tree
with n! outcomes, so its height h(n) will verify n! < 2" Since
log, (n!) = O(nlogyn)," we have h(n) = Q(nlog,n). So the worse
case complexity of a sorting algorithm is Q(nlog, n). Since the merge-
sort algorithm uses precisely O(n log, n) comparisons, we know that it
is optimal.

8.3.3. Isomorphisms of Trees. Assume that 7} is a tree with
vertex set V) and Ty is another tree with vertex set V5. If they are
rooted trees then we call their roots r; and ro respectively. We will
study three different kinds of tree-isomorphisms between T} and T5.

'According to Stirling’s formula, n! ~ n"e "\/27mn, so taking logarithms
logy n! ~ nlogy n — nlog, e + 1 log, (2n) = ©(nlog, n).

8.3. DECISION TREES, TREE ISOMORPHISMS 106

1. Usual graph-isomorphism between trees: T} and 75 are isomor-
phic if there is a bijection f : V; — V5 that preserves adjacency,
i.e., f(v) is adjacent to f(w) if and only if v is adjacent to w.

2. Rooted-tree-isomorphism: 77 and 75 are isomorphic if there is
a bijection f : V; — V5 that preserves adjacency and the root
vertex, i.e.:

(a) f(v) is adjacent to f(w) if and only if v is adjacent to w.

(b) f(Tl) = T2.

3. Binary-tree-isomorphism: Two binary trees 77 and 715 are iso-
morphic if there is a bijection f : V; — V5 that preserves adja-
cency, and the root vertex, and left /right children, i.e.:

(a) f(v) is adjacent to f(w) if and only if v is adjacent to w.

(b) f(ry) = 7.

(¢) f(v) is a left child of f(w) if and only if v is a left child of
w.

(d) f(v) is a right child of f(w) if and only if v is a right child

of w.

FExample: Figure 8.6 shows three trees which are graph-isomorphic.
On the other hand as rooted trees 75 and T3 are isomorphic, but they
are not isomorphic to T} because the root of T} has degree 3, while the
roots of T, and T35 have degree 2. Finally T3 and 73 are not isomorphic
as binary trees because the left child of the root in 75 is a terminal
vertex while the left child of the root of T3 has two children.

T1 T2 T3

F1GURE 8.6. Trees with different kinds of isomorphisms.

FEzercise: Find all non-isomorphic 3-vertex free trees, 3-vertex rooted
trees and 3-vertex binary trees. Answer: Figure 8.7 shows all 5 non-
isomorphic 3-vertex binary trees. As rooted trees To—T}5 are isomorphic,
but 77 is not isomorphic to the others, so there are 2 non-isomorphic
3-vertex rooted trees represented for instance by 77 and T,. All of them

8.3. DECISION TREES, TREE ISOMORPHISMS 107

are isomorphic as free trees, so there is only 1 non-isomorphic 3-vertex

free tree.
T1 T2 T3 T4 T5

F1GURE 8.7. Non-isomorphic binary trees.

8.3.4. Huffman Codes. Usually characters are represented in a
computer with fix length bit strings. Huffman codes provide an alter-
native representation with variable length bit strings, so that shorter
strings are used for the most frequently used characters. As an example
assume that we have an alphabet with four symbols: A = {a,b, ¢, d}.
Two bits are enough for representing them, for instance a = 11, b = 10,
¢ = 01, d = 00 would be one such representation. With this encoding
n-character words will have 2n bits. However assume that they do not
appear with the same frequency, instead some are more frequent that
others, say a appears with a frequency of 50%, b 30%, ¢ 15% and d
5%. Then the following enconding would be more efficient than the fix
length encoding: a =1, b = 01, ¢ = 001, d = 000. Now in average an
n-character word will have 0.5n a’s, 0.3n b’s, 0.15n ¢’s and 0.05n d’s,
hence its length will be 0.5n-14-0.3n-2+0.15n-3+0.05n-3 = 1.7n, which
is shorter than 2n. In general the length per character of a given en-
coding with characters aq, as, . . ., a, whose frequencies are f1, fa, ..., fa
is

%kal(ak),
k=1

where [(aj) = length of a; and F' = > }_, fr. The problem now is,
given an alphabet and the frequencies of its characters, find an optimal
encoding that provides minimum average length for words.

Fix length and Huffman codes can be represented by trees like in
figure 8.8. The code of each symbol consists of the sequence of labels of
the edges in the path from the root to the leaf with the desired symbol.

8.3. DECISION TREES, TREE ISOMORPHISMS 108

Fix length code Huffman code

FIGURE 8.8. Fix length code and Huffman code.

8.3.5. Constructing an Optimal Huffman Code. An optimal
Huffman code is a Huffman code in which the average length of the
symbols is minimum. In general an optimal Huffman code can be made
as follows. First we list the frequencies of all the codes and represent
the symbols as vertices (which at the end will be leaves of a tree).
Then we replace the two smallest frequencies f; and f, with their sum
f1 + f2, and join the corresponding two symbols to a common vertex
above them by two edges, one labeled 0 and the other one labeled 1.
Than common vertex plays the role of a new symbol with a frequency
equal to f1 + fo. Then we repeat the same operation with the resulting
shorter list of frequencies until the list is reduced to one element and
the graph obtained becomes a tree.

Example: Find the optimal Huffman code for the following table of
symbols:

character | frequency
a 2
b 3
c 7
d 8
e 12

Answer: : The successive reductions of the list of frequencies are as
follows:

2,3,7,8,12 — 5,7,8,12 — 12,8,12
5 12

Here we have a choice, we can choose to add the first 12 and 8, or
8 and the second 12. Let’s choose the former:

8.3. DECISION TREES, TREE ISOMORPHISMS
12,8,12 — 20,12 — 32
—~— ——
20 32

The tree obtained is the following:

FIGURE 8.9. Optimal Huffman code 1.

The resulting code is as follows:

character | code
a 1111
b 1110
c 110
d 10
e 0

The other choice yields the following:

12,8,12 — 20,12 — 32
20 32

FiGURE 8.10. Optimal Huffman code 2.

109

8.3. DECISION TREES, TREE ISOMORPHISMS 110

character | code
a 111
b 110
c 10
d 01
e 00

8.3.6. Game Trees. Trees are used in the analysis of some games.
As an example we study the following game using a tree: Initially
there are two piles with 3 coins and 1 coin respectively. Taking turns
two players remove any number of coins from one of the piles. The
player that removes the last coin loses. The following tree represents
all possible sequences of choices. Each node shows the number of coins
in each pile, and each edge represents a possible “move” (choice) from
one of the players. The first player is represented with a box and the
second player is represented with an circle.

FIGURE 8.11. Tree of a game.

The analysis of the game starts by labeling each terminal vertex
with “1”7 if it represents a victory for the first player and “0” if it
represents a victory for the second player. This numbers represent
the “value” of each position of the game, so that the first player is
interested in making it “maximum” and the second player wants to
make it “minimum”. Then we continue labeling the rest of the vertices
in the following way. After all the children of a given vertex have
been labeled, we label the vertex depending on whether it is a “first
player” position (box) or a “second player” position (circle). First
player positions are labeled with the maximum value of the labels of
its children, second player positions are labeled with the minimum

8.3. DECISION TREES, TREE ISOMORPHISMS 111

value of the labels of its children. This process is called the minimax
procedure. FEvery vertex labeled “1” will represent a position in which
the first player has advantage and can win if he/she works without
making mistakes; on the other hand, vertices labeled “0” represent
positions for which the second player has advantage. Now the strategy
is for the first player to select at each position a children with maximum
value, while the second player will be interested in selecting children
with minimum value. If the starting position has been labeled “1” that
means that the first player has a winning strategy, otherwise the second
player has advantage. For instance in the present game the first player
has advantage at the initial position, and only one favorable movement
at that point: (i’) — ((1)), i.e., he/she must remove all 3 coins from
the first pile. If for any reason the first player makes a mistake and
removes say one coin from the first pile, going to position (f), then the

second player has one favorable move to vertex (0), which is the one

1
with minimum “value”.

Alpha-beta pruning. In some games the game tree is so complicated
that it cannot be fully analyzed, so it is built up to a given depth only.
The vertices reached at that depth are not terminal, but they can
be “evaluated” using heuristic methods (for instance in chess usually
losing a knight is a better choice than losing the queen, so a position
with one queen and no knights will have a higher value than one with
no queen and one knight). Even so the evaluation and labeling of the
vertices can be time consuming, but we can bypass the evaluation of
many vertices using the technique of alpha-beta pruning. The idea is
to skip a vertex as soon as it becomes obvious that its value will not
affect the value of its parent. In order to do that with a first player
(boxed) vertex v, we assign it an alpha value equal to the maximum
value of its children evaluated so far. Assume that we are evaluating
one of its children w, which will be a second player (circled) position. If
at any point a children of w gets a value less than or equal to the alpha
value of v then it will become obvious that the value of w is going to
be less than the current alpha value of v, so it will not affect the value
of v and we can stop the process of evaluation of w (prone the subtree
at w). That is called an alpha cutoff. Similarly, at a second player
(circled) vertex v, we assign a beta value equal to the minimum value
of its children evaluated so far, and practice a beta cutoff when one of
its grandchildren gets a value greater than or equal to the current beta
value of v, i.e., we prone the subtree at w, where w is the parent of
that grandchildren.

8.3. DECISION TREES, TREE ISOMORPHISMS 112

FiGURE 8.12. Alpha cutoff.

8.4. TREE TRANSVERSAL 113

8.4. Tree Transversal

8.4.1. Transversal Algorithms. In order to motivate this sub-
ject, we introduce the concept of Polish notation. Given a (not nec-
essarily commutative) binary operation o, it is customary to represent
the result of applying the operation to two elements a, b by placing the
operation symbol in the middle:

aob.

This is called infiz notation. The Polish notation consists of placing
the symbol to the left:
oab.

The reverse Polish notation consists of placing the symbol to the right:
ab o .

The advantage of Polish notation is that it allows us to write ex-
pressions without need for parenthesis. For instance, the expression
a* (b+c) in Polish notation would be * a+b¢, while axb+cis +*abec.
Also, Polish notation is easier to evaluate in a computer.

In order to evaluate an expression in Polish notation, we scan the
expression from right to left, placing the elements in a stack.! Each
time we find an operator, we replace the two top symbols of the stack
by the result of applying the operator to those elements. For instance,
the expression * + 234 (which in infix notation is “(2 + 3) *4”) would
be evaluated like this:

expression stack

*+234

*+23 4

* 4+ 2 3 4

* 4 2 34

* 5 4
20

An algebraic expression can be represented by a binary rooted tree
obtained recursively in the following way. The tree for a constant or
variable a has a as its only vertex. If the algebraic expression S is of

YA stack or last-in first-out (LIFO) system, is a linear list of elements in which
insertions and deletions take place only at one end, called top of the list. A queue
or first-in first-out (FIFO) system, is a linear list of elements in which deletions
take place only at one end, called front of the list, and insertions take place only
at the other end, called rear of the list.

8.4. TREE TRANSVERSAL 114

the form Sy o S, where Sy and Sg are subexpressions with trees T},
and T respectively, and o is an operator, then the tree T" for S consists
of o as root, and the subtrees 77, and T (fig. 8.13).

(0]

T, Ts
FIGURE &.13. Tree of S; o .S5.

For instance, consider the following algebraic expression:
a+bxc+dlex(f+h),

where 4+ denotes addition, * denotes multiplication and T denotes ex-
ponentiation. The binary tree for this expression is given in figure 8.14.

N
A VERVAN
N\, /\ /\

FIGURE 8.14. Tree for a+bxc+d T ex* (f +h).

Given the binary tree of an algebraic expression, its Polish, reverse
Polish and infix representation are different ways of ordering the ver-
tices of the tree, namely in preorder, postorder and inorder respectively.

The following are recursive definitions of several orderings of the
vertices of a rooted tree T' = (V, E) with root r. If T" has only one
vertex r, then r by itself constitutes the preorder, postorder and inorder
transversal of T'. Otherwise, let 77, ..., Ty the subtrees of T from left
to right (fig. 8.15). Then:

1. Preorder Transversal: Pre(T) = r,Pre(11), ..., Pre(T}).

8.4. TREE TRANSVERSAL 115

r

T1 T2 Tk
FiGURE 8.15. Ordering of trees.

2. Postorder Transversal: Post(T) = Post(T}), ..., Post(T}),r.

3. Inorder Transversal. If T is a binary tree with root r, left sub-
tree Tp, and right subtree T, then: In(7T") = In(77%), r, In(Tg).

8.5. SPANNING TREES 116

8.5. Spanning Trees

8.5.1. Spanning Trees. A tree T is a spanning tree of a graph G
if T is a subgraph of GG that contains all the vertices of G. For instance
the graph of figure 8.16 has a spanning tree represented by the thicker
edges.

a f
FIGURE 8.16. Spanning tree.

Every connected graph has a spanning tree which can be obtained
by removing edges until the resulting graph becomes acyclic. In prac-
tice, however, removing edges is not efficient because finding cycles is
time consuming.

Next, we give two algorithms to find the spanning tree T" of a loop-
free connected undirected graph G = (V,E). We assume that the
vertices of GG are given in a certain order vy, vs,...,v,. The resulting
spanning tree will be T'= (V' E').

8.5.2. Breadth-First Search Algorithm. The idea is to start
with vertex vy as root, add the vertices that are adjacent to vy, then the
ones that are adjacent to the latter and have not been visited yet, and
so on. This algorithm uses a queue (initially empty) to store vertices
of the graph. In consists of the following:

1. Add vy to T, insert it in the queue and mark it as “visited”.

2. If the queue is empty, then we are done. Otherwise let v be the
vertex in the front of the queue.

3. For each vertex v' of G that has not been visited yet and is
adjacent to v (there might be none) taken in order of increasing
subscripts, add vertex v" and edge (v,v) to T, insert v" in the
queue and mark it as “visited”.

4. Delete v from the queue.

8.5. SPANNING TREES 117

5. Go to step 2.

A pseudocode version of the algorithm is as follows:

1: procedure bfs(V,E)

2: 8 := (v1) {ordered list of vertices of a fix level}
3: Vv’ := {vi} {vl is the root of the spanning tree}
4: E’ := {} {no edges in the spanning tree yet}

5: while true

6 begin

7 for each x in S, in order,

8: for each y in V - ¥V’

9: if (x,y) is an edge then

10: add edge (x,y) to E’ and vertex y to V’
11: if no edges were added then

12: return T

13: S := children of S

14: end

15: end bfs

Figure 8.17 shows the spanning tree obtained using the breadth-first
search algorithm on the graph with its vertices ordered lexicographi-
cally: a,b,c,d,e, f,g,h,i.

a f
FIGURE 8.17. Breadth-First Search.

8.5.3. Depth-First Search Algorithm. The idea of this algo-
rithm is to make a path as long as possible, and then go back (back-
track) to add branches also as long as possible.

This algorithm uses a stack (initially empty) to store vertices of the
graph. In consists of the following:

1. Add v; to T, insert it in the stack and mark it as “visited”.

2.

3.

4.

D.

8.5. SPANNING TREES 118

If the stack is empty, then we are done. Otherwise let v be the
vertex on the top of the stack.

If there is no vertex v’ that is adjacent to v and has not been
visited yet, then delete v and go to step 2 (backtrack). Oth-
erwise, let v" be the first non-visited vertex that is adjacent to
v.

Add vertex v and edge (v,v") to T, insert v" in the stack and
mark it as “visited”.

Go to step 2.

An alternative recursive definition is as follows. We define recur-
sively a process P applied to a given vertex v in the following way:

1.
2.

=~ W

Add vertex v to T" and mark it as “visited”.

If there is no vertex v’ that is adjacent to v and has not been
visited yet, then return. Otherwise, let v’ be the first non-visited
vertex that is adjacent to v.

. Add the edge (v,v’) to T.

Apply P to v'.

. Go to step 2 (backtrack).

The Depth-First Search Algorithm consists of applying the process just
defined to v;.

A pseudocode version of the algorithm is as follows:

: procedure dfs(V,E)

Vv’ := {vi} {vl is the root of the spanning tree}
E’ := {} {no edges in the spanning tree yet}
w o= vl
while true
begin

while there is an edge (w,v) that when added
to T does not create a cycle in T
begin
Choose first v such that (w,v)
does not create a cycle in T
add (w,v) to E’
add v to V’
Woi= v
end
if w = vl then

8.5. SPANNING TREES 119

17: return T

18: w := parent of w in T {backtrack}
19: end

20: end

Figure 8.18 shows the spanning tree obtained using the breadth-first
search algorithm on the graph with its vertices ordered lexicographi-
cally: a,b,c,d,e, f, g, h,1.

a f

FI1GURE 8.18. Depth-First Search.

8.5.4. Minimal Spanning Trees. Given a connected weighted
tree GG, its minimal spanning tree is a spanning tree of GG such that the
sum of the weights of its edges is minimum. For instance for the graph
of figure 8.19, the spanning tree shown is the one of minimum weight.

a 4 b
2 5

3 c 1 d
6 6

e 2 f

FIGURE 8.19. Minimum Spanning Tree.

Prim’s Algorithm. An algorithm to find a minimal spanning tree is
Prim’s Algorithm. It starts with a single vertex and at each iteration
adds to the current tree a minimum weight edge that does not complete
a cycle.

8.5. SPANNING TREES 120

The following is a pseudocode version of Prim’s algorithm. If (z,y)
is an edge in G = (V, E) then w(z,y) is its weight, otherwise w(x,y) =
0o. The starting vertex is s.

1: procedure prim(V,w,s)

2: V’» := {s} {vertex set starts with s}

3: E’ = {} {edge set initially empty}

4: for i := 1 ton-1 {put n edges in spanning tree}
5 begin

6: find x in V’ and y in V - V’ with minimum w(x,y)
7 add y to V’

8 add (x,y) to E’

9 end

10: return E’

11: end prim

Prim’s algorithm is an example of a greedy algorithm. A greedy
algorithm is an algorithm that optimized the choice at each iteration
without regard to previous choices (“doing the best locally”). Prim’s
algorithm makes a minimum spanning tree, but in general a greedy
algorithm does not always finds an optimal solution to a given problem.
For instance in figure 8.20 a greedy algorithm to find the shortest path
from a to z, working by adding the shortest available edge to the most
recently added vertex, would return acz, which is not the shortest path.

b

100
c

FIGURE &8.20

Kruskal’s Algorithm. Another algorithm to find a minimal span-
ning tree in a connected weighted tree G = (V, E) is Kruskal’s Algo-
rithm. It starts with all n vertices of G and no edges. At each iteration
we add an edge having minimum weight that does not complete a cycle.
We stop after adding n — 1 edges.

e

P O O 00 NO O WN -

8.5. SPANNING TREES

: procedure kruskal(E,w,n)

Vo=V
E = {)
while |E’| < n-1
begin
among all edges not completing a cycle in T
choose e of minimum weight and add it to E
end
T’ = (V’,E?)
return T’

: end kruskal

121

CHAPTER 9

Boolean Algebras

9.1. Combinatorial Circuits

9.1.1. Introduction. At their lowest level digital computers han-
dle only binary signals, represented with the symbols 0 and 1. The
most elementary circuits that combine those signals are called gates.
Figure 9.1 shows three gates: OR, AND and NOT.

x1
OR GATE x1l + x2
x2

x1

AND GATE j:} xl o x2
x2

NOT GATE X ~>

FIGURE 9.1. Gates.

>|

Their outputs can be expressed as a function of their inputs by the
following logic tables:

X1 To | X1+ Xo

1 1 1

1 0 1

0 1 1

0 0 0
OR GATE

122

9.1. COMBINATORIAL CIRCUITS 123

1 T2 | T1 -T2
1 1 1

1 0 0

0 1 0

0 0 0
AND GATE
z x

1 0

0 1
NOT GATE

These are examples of combinatorial circuits. A combinatorial cir-
cuit is a circuit whose output is uniquely defined by its inputs. They
do not have memory, previous inputs do not affect their outputs. Some
combinations of gates can be used to make more complicated combi-
natorial circuits. For instance figure 9.2 is combinatorial circuit with
the logic table shown below, representing the values of the Boolean
expression y = (x1 + x2) - 3.

‘ }ﬁ}b@ y

FIGURE 9.2. A combinatorial circuit.

ro x3|y=(r1+32) 73

B

OO OO =
OO = = OO =
O O, OF,O
— == O = O

However the circuit in figure 9.3 is not a combinatorial circuit. If
21 =1 and x5 = 0 then y can be 0 or 1. Assume that at a given time
y = 0. If we input a signal x5 = 1, the output becomes y = 1, and

9.1. COMBINATORIAL CIRCUITS 124

stays so even after xy goes back to its original value 0. That way we
can store a bit. We can “delete” it by switching input x; to 0.

x1

x2

FIGURE 9.3. Not a combinatorial circuit.

9.1.2. Properties of Combinatorial Circuits. Here Z, = {0,1}
represents the set of signals handled by combinatorial circuits, and the
operations performed on those signals by AND, OR and NOT gates are
represented by the symbols -, + and ~ respectively. Then their prop-
erties are the following (a, b, ¢ are elements of Zs, i.e., each represents
either 0 or 1):

1. Associative
(a+b)+c=a+(b+c)

(a-b)-c=a-(b-c)
2. Commutative
a+b=b+a
a-b=>b-a
3. Distributive
a-(b+c)=(a-b)+(a-c)
a+(b-c)=(a+b)(a+c)

4. Identity
a+0=a
a-1=a
5. Complement
ata=1
a-a=0

A system satisfying those properties is called a Boolean algebra.

Two Boolean expressions are defined to be equal is they have the
same values for all possible assignments of values to their literals. Ez-
ample: x +y =T -y, as shown in the following table:

9.1. COMBINATORIAL CIRCUITS 125

T ylrty Ty
11 0 0
1 01 0 0
0 1 0 0
00 1 1

9.1.3. Abstract Boolean Algebras. Here we deal with general
Boolean algebras; combinatorial circuits are an example, but there are
others.

A Boolean algebra B = (S,V,A,7,0,1) is a set S containing two
distinguished elements 0 and 1, two binary operators V and A on S,
and a unary operator — on S, satisfying the following properties (z, vy,
z are elements of S):

1. Associative

2. Commutative

3. Distributive

4. Identity
zV0=ux
zNANl==zx
5. Complement
xVzT =1
xANT =0

Ezample: (Zo,+,-,7,0,1) is a Boolean algebra.

Ezxample: If U is a universal set and P(U)= the power set of S (col-
lection of subsets of S) then (P(U),U,N,~,0,U). is a Boolean algebra.

9.1. COMBINATORIAL CIRCUITS 126

9.1.4. Other Properties of Boolean Algebras. The properties

mentioned above define a Boolean algebra, but Boolean algebras also
have other properties:

1. Idempotent

rNVNr =2
TANT =2
2. Bound
rV1=1
zNAN0=0
3. Absorption
rVzIy==2x
rA(xVy) =z
4. Involution
T=ux
5. 0and 1 _
0=1
1=0
6. De Morgan’s
TVY=TNYy
TNANYy=TVY

For instance the first idempotent law can be proved like this: x =
xVO0=zxzVzAT=(xVz)AN(xVT)=(zVa)ANl=2xVu.

9.2. BOOLEAN FUNCTIONS, APPLICATIONS 127
9.2. Boolean Functions, Applications
9.2.1. Introduction. A Boolean function is a function from Z%

to Zy. For instance, consider the exclusive-or function, defined by the
following table:

T1 To | X1 Dxo
1 1 0
1 0 1
0 1 1
0 0 0

The exclusive-or function can interpreted as a function Z3 — Z,
that assigns (1,1) — 0, (1,0) — 1, (0,1) — 1, (0,0) — 0. It can also
be written as a Boolean expression in the following way:

TP xg = (Qil 'fz) + (El '513'2)

Every Boolean function can be written as a Boolean expression as
we are going to see next.

9.2.2. Disjunctive Normal Form. We start with a definition.
A minterm in the symbols x1, xs, ..., x, is a Boolean expression of the
form yy - yo - - - - - Yn, Where each y; is either z; or 7;.

Given any Boolean function f : Z} — Zs that is not identically
zero, it can be represented

flzr, .. xn) =my +mo+ -+ + my,

where my, ma, ..., my are all the minterms m; = y;-ys-- - - -y, such that
flar,aq,...,a,) = 1, where y; = z; if a; = 1 and y; = 7; if a; = 0.
That representation is called disjunctive normal form of the Boolean
function f.

Example: We have seen that the exclusive-or can be represented
x1 ® xg = (21 - T3) + (T7 - x2). This provides a way to implement the
exclusive-or with a combinatorial circuit as shown in figure 9.4.

9.2.3. Conjunctive Normal Form. A mazterm in the symbols
x1,%a,...,T, is a Boolean expression of the form y; + yo + - -+ + yn,
where each y; is either z; or ;.

9.2. BOOLEAN FUNCTIONS, APPLICATIONS 128

x1

FIGURE 9.4. Exclusive-Or.

x16D x2

Given any Boolean function f : Z — Z, that is not identically
one, it can be represented

flzy, ... zn) =My - My----- M,
where My, M,, ..., M, are all the maxterms M; = y; +y2 + -+ + Yy
such that f(ay,ay,...,a,) =0, where y; = z; if a; = 0 and y; = T; if

a; = 1. That representation is called conjunctive normal form of the
Boolean function f.

FExample: The conjunctive normal form of the exclusive-or is

T1 D xo = (z1 + x2) - (T1 + T2) -

9.2.4. Functionally Complete Sets of Gates. We have seen
how to design combinatorial circuits using AND, OR and NOT gates.
Here we will see how to do the same with other kinds of gates. In the
following gates will be considered as functions from Z% into Z, intended
to serve as building blocks of arbitrary boolean functions.

A set of gates {g1,9o,...,gr} is said to be functionally complete
if for any integer n and any function f : Z} — Z, it is possible to
construct a combinatorial circuit that computes f using only the gates
91,92, - - -, gr- Erample: The result about the existence of a disjunctive
normal form for any Boolean function proves that the set of gates
{AND, OR,NOT} is functionally complete. Next we show other sets
of gates that are also functionally complete.

1. The set of gates {AND, NOT} is functionally complete. Proof:
Since we already know that {AND, OR,NOT} is functionally
complete, all we need to do is to show that we can compute
x + y using only AND and NOT gates. In fact:

T+y=7-7,

hence the combinatorial circuit of figure 9.5 computes x + y.

9.2. BOOLEAN FUNCTIONS, APPLICATIONS 129

" —
xl + x2
x2 4%

Ficure 9.5. OR with AND and NOT.

2. The set of gates {OR,NOT} is functionally complete. The
proof is similar:
T-y=7T+7y,
hence the combinatorial circuit of figure 9.6 computes x +y.

x1
x1l e x2
x2

F1GURE 9.6. AND with OR and NOT.

3. The gate NAND, denoted T and defined as

o 1 29 = 0 ifry=1and zy=1
AR otherwise,

is functionally complete.

X1 ——— j
—— xlﬁ X2
X2 ———

FiGURE 9.7. NAND gate.

Proof: Note that x Ty =7 -y. Hencex =7z =2 T x, so
the NOT gate can be implemented with a NAND gate. Also the
OR gate can be implemented with NAND gates: x+y =7 -7 =
(x 7) 7 (y T y). Since the set {OR,NOT} is functionally
complete and each of its elements can be implemented with
NAND gates, the NAND gate is functionally complete.

9.2.5. Minimization of Combinatorial Circuits. Here we ad-
dress the problems of finding a combinatorial circuit that computes a
given Boolean function with the minimum number of gates. The idea

9.2. BOOLEAN FUNCTIONS, APPLICATIONS 130

XTDH ;
Ly,
=

FiGURE 9.8. NOT and OR functions implemented with
NAND gates.

1

is to simplify the corresponding Boolean expression by using algebraic
properties such as (£ -a) + (E-a) = E and £+ (E - a) = E, where
E is any Boolean expression. For simplicity in the following we will
represent a - b as ab, so for instance the expressions above will look like
this: Fa+ Fa=F and £+ Fa = FE.

Ezample: Let F(z,y, z) the Boolean function defined by the follow-
ing table:

x vy z|f(xyz2)
1 11 1
1 10 1
1 01 0
1 0 0 1
011 0
010 0
0 01 0
0 00 0

Its disjunctive normal form is f(x,y,z) = zyz + zyZz + 2yz. This
function can be implemented with the combinatorial circuit of figure
9.9.

9.2. BOOLEAN FUNCTIONS, APPLICATIONS 131

—
Tt
i

FIGURE 9.9. A circuit that computes f(z,y, z) = zyz+
TYZ + TYZ.

fxy.2)

But we can do better if we simplify the expression in the following

way:
xy
—_——

f(x,y,2) = vyz + vyz +2yz
=y + Yz
= z(y + J7)
=z(y +7)(y +7%)
=2(y+7%),
which corresponds to the circuit of figure 9.10.

X jﬂ’y'Z)
y
|)

FiGure 9.10. A simpler circuit that computes
flz,y,2) = xyz + xyZ + 2yz.

9.2.6. Multi-Output Combinatorial Circuits. Ezample: Half-
Adder. A half-adder is a combinatorial circuit with two inputs x and
y and two outputs s and ¢, where s represents the sum of x and y and
c is the carry bit. Its table is as follows:

O O~ 8
O = O e
O~ = Ol®w
O O OO

So the sum is s = x @y (exclusive-or) and the carry bit is ¢ = x - y.
Figure 9.11 shows a half-adder circuit.

9.2. BOOLEAN FUNCTIONS, APPLICATIONS 132

) }

FIGURE 9.11. Half-adder circuit.

CHAPTER 10

Automata, Grammars and Languages

10.1. Finite State Machines

10.1.1. Finite-State Machines. Combinatorial circuits have no
memory or internal states, their output depends only on the current
values of their inputs. Finite state machines on the other hand have
internal states, so their output may depend not only on its current
inputs but also on the past history of those inputs.

A finite-state machine consists of the following:

. A finite set of states S.

. A finite set of input symbols J.

. A finite set of output symbols O.

. A next-state or transition function f:8 xJ — 8.
. An output function g : 8 xJ — 0.

. An initial state o € 3.

O U = W N~

We represent the machine M = (8,3, 0, f, g,0)

FExample: We describe a finite state machine with two input symbols
J = {a, b} and two output symbols O = {0, 1} that accepts any string
from J* and outputs as many 1’s as a’s there are at the beginning of the
string, then it outputs only 0’s. The internal states are 8 = {0, 01},
where oy is the initial state—we interpret it as not having seeing any
“b” yet; then the machine will switch to o; as soon as the first “b”
arrives. The next-state and output functions are as follows:

f g
Jla bla b
S
(o) Og O1 10
g1 o1 01 0 0

133

10.1. FINITE STATE MACHINES 134

This finite-state machine also can be represented with the following
transition diagram:

a/0

a/l
))
start oo Db/o

The vertices of the diagram are the states. If in state o an input
i causes the machine to output o and go to state ¢’ then we draw an
arrow from o to ¢’ labeled i/o or i, 0.

Example: The following example is similar to the previous one but
the machine outputs 1 only after a change of input symbol, otherwise

it outputs 0:
start—>
a/0

b/0
b/1

) O

FExample: A Serial-Adder. A serial adder accepts two bits and out-
puts its sum. So the input set is J = {00,01,10,11}. The output
set is O = {0,1}. The set of states is 8 = {NC,C}, which stands
for “no carry” and “carry” respectively. The transition diagram is the
following;:

a/0 a/l b/0

00/0 01/1 01/0
11/0 /?ﬁ 10/0
start—— :@‘/
00/1 \};
10/1 11/1

10.1.2. Finite-State Automata. A finite-state automaton is sim-
ilar to a finite-state machine but with no output, and with a set of states
called accepting or final states. More specifically, finite-state automa-
ton consists of:

1. A finite set of states 8.
2. A finite set of input symbols J.
3. A neaxt-state or transition function f:8 xJ — 8.

10.1. FINITE STATE MACHINES 135

4. An imitial state o € 8.
5. A subset F C § of accepting or final states.

We represent the automaton A = (8,7, f,0,F). We say that an au-
tomaton accepts or recognizes a given string of input symbols if that
strings takes the automaton from the start state to a final state.

FExample: The following transition diagrams represent an automa-
ton accepting any string of a’s and b’s ending with an a. The first
diagram uses the same scheme as with finite-state machines, with 1
representing “accept” or “recognize”, and “0” representing ‘“not ac-
cept”:

b/0 a/l
a/l 2
startH:
b/0

The second kind of diagram omits the outputs and represents the
accepting states with double circles:

b a

0. [

start—— :
b

Two finite-state automata that accept exactly the same set of strings
are said to be equivalent. For instance the following automaton also
accepts precisely strings of a’s abd b’s that end with an a, so it is
equivalent to the automaton shown above:

3. ‘»
start—— :\;j —
v

b

Example: The following automaton accepts strings of a’s and b’s
with exactly an even number of a’s:

10.1. FINITE STATE MACHINES 136

start*> @

FExample: The following automaton accepts strings starting with
one a followed by any number of b’s:

!
start - - D
U

b

Example: The following automaton accepts strings ending with aba:

b

N

sart ()0 20
U S

A

\J
b a a

10.2. LANGUAGES AND GRAMMARS 137

10.2. Languages and Grammars

10.2.1. Formal Languages. Consider algebraic expressions writ-
ten with the symbols A = {x,y,z,+,*,(,)}. The following are some
of them: “z 4+ yx*xy”, “y+ (xxy+vy)*x2", “(x+y)*xx+ 2", etc.
There are however some strings of symbols that are not legitimate al-
gebraic expressions, because they have some sort of syntax error, e.g.:
“(z+y”, “2+ +yxa”, “x(xy) + 27, etc. So syntactically correct al-
gebraic expressions are a subset of the whole set A* of possible strings
over A.

In general, given a finite set A (the alphabet), a (formal) language
over A is a subset of A* (set of strings of A).

Although in principle any subset of A* is a formal language, we are
interested only in languages with certain structure. For instance: let
A ={a,b}. The set of strings over A with an even number of a’s is a
language over A.

10.2.2. Grammars. A way to determine the structure of a lan-
guage is with a grammar. In order to define a grammar we need two
kinds of symbols: non-terminal, used to represent given subsets of the
language, and terminal, the final symbols that occur in the strings
of the language. For instance in the example about algebraic expres-
sions mentioned above, the final symbols are the elements of the set
A = {z,y,2,+,%,(,)}. The non-terminal symbols can be chosen to
represent a complete algebraic expression (E), or terms (7") consisting
of product of factors (F'). Then we can say that an algebraic expression
E consists of a single term

E—-T,
or the sum of an algebraic expression and a term
E—FE+T.
A term may consists of a factor or a product of a term and a factor
T — F
T—TxF

A factor may consists of an algebraic expression between parenthesis

10.2. LANGUAGES AND GRAMMARS 138
F—(E),
or an isolated terminal symbol
F—x,
F =y,
F—z.

Those expressions are called productions, and tell us how we can
generate syntactically correct algebraic expressions by replacing suc-
cessively the symbols on the left by the expressions on the right. For
instance the algebraic expression ““y+ (x*y+y)*z” can be generated
like this:

EFE=FE+T=T+T=F+T=y+T=y+T*xF =y+FxF =
y+(E)xF = y+(E4+T)xF = y+(T+T)+F = y+(T*F+T)xF =
y+(F«F+T)«xF = y+(xxT+T)«F=y+(xxF+T)xF =
y+(xxy+T)*«F=y+(xxy+ F)«T=y+ (xxy+y) *xF =
y+ (rxy+y)*z.

In general a phrase-structure grammar (or simply, grammar) G
consists of

1. A finite set V' of symbols called vocabulary or alphabet.

2. A subset T C V of terminal symbols. The elements of N =
V' — T are called nonterminal symbols or nonterminals.

3. A start symbol o € N.

4. A finite subset P of (V*—T") x V* called the set of productions.

We write G = (V, T, 0, P).
A production (A, B) € P is written:

A—B.

The right hand side of a production can be any combination of
terminal and nonterminal symbols. The left hand side must contain at
least one nonterminal symbol.

10.2. LANGUAGES AND GRAMMARS 139

If @« — [is a production and zay € V*, we say that x(y is directly
deriwvable from ray, and we write

ray = 2y .

If we have ay = ay = -+ = «, (n > 0), we say that «, is derivable
from a4, and we write oy = a, (by convention also o = aq.)

Given a grammar G, the language L(G) associated to this grammar
is the subset of T consisting of all strings derivable from o.

10.2.3. Backus Normal Form. The Backus Normal Form or
BNF' is an alternative way to represent productions. The production
S — T is written S ::= T. Productions of the form S ::=T}, S =T,

.., 8 ==T1T,, can be combined as

S:T1|T2||Tn

So, for instance, the grammar of algebraic expressions defined above
can be written in BNF as follows:

E:=T|E+T
T:=F|TxF
Fi=(B) |2y 2

10.2.4. Combining Grammars. Let G; = (V4,11,01, P1) and
Gy = (Vo, T3, 09, P5) be two grammars, where Ny = V] — T} and Ny =
Vo — T; are disjoint (rename nonterminal symbols if necessary). Let
L, = L(G,) and Ly = L(G3) be the languages associated respectively
to G; and G5. Also assume that o is a new symbol not in V; U V5.
Then

1. Union Rule: the language union of L and L
L1UL2:{OJ|CY€L101'CY€L1}
starts with the two productions

o— 01, O0— 0.

2. Product Rule: the language product of Ly and Lo
LiLy ={af|a€ Ly, B € L}

10.2. LANGUAGES AND GRAMMARS 140

where aff = string concatenation of a and (3, starts with the
production
O — 0102.

3. Closure Rule: the language closure of L,
Li=LULjULiU...
were LY = {A\}and LT = {oyag...a, | ap € Ly, k=1,2,...,n}
(n=1,2,...), starts with the two productions

o— 010, 0—A\.

10.2.5. Types of Grammars (Chomsky’s Classification). Let
G be a grammar and let A denote the null string.

0. G is a phrase-structure (or type 0) grammar if every production
is of the form:
a— 0,

where o € V¥ = T* § € V*.

1. G is a context-sensitive (or type 1) grammar if every production
is of the form:

aAfB — adf
(i.e.: we may replace A with § in the context of a and [3), where

a,feV Ae N, jeV*—{A\}

2. G is a context-free (or type 2) grammar if every production is
of the form:

A—9,
where A € N, § € V*.
3. G is a reqular (or type 3) grammar if every production is of the
form:
A—a or A—aB or A—)\,
where A, B€ N,a€eT.

A language L is context-sensitive (respectively context-free, requ-
lar) if there is a context-sensitive (respectively context-free, regular)
grammar G such that L = L(G).

The following examples show that these grammars define different
kinds of languages.

10.2. LANGUAGES AND GRAMMARS 141

Ezample: The following language is type 3 (regular):
L={d"b"|n=1,23...;m=1,2,3,...}.

A type 3 grammar for that language is the following: T = {a,b},
N = {0, S}, with start symbol o, and productions:

c—ao, o—aS, S—bS, S—b.
Ezample: The following language is type 2 (context-free) but not

type 3:
L={a"b"|n=1,2,3,...}.

A type 2 grammar for that language is the following:

T = {a,b}, N = {0}, with start symbol o, and productions

o —aocb, o—ab.

Ezample: The following language is type 1 (context-sensitive) but
not type 2:

L={a"bt"c"|n=1,2,3,...}.
A type 1 grammar for that language is the following:
T ={a,b,c}, N = {0, A, C}, with start symbol o, and productions

o — abe, o — aAbc,
A—abC, A— aAbC,
Cb — bC', Cc — cc.

There are also type 0 languages that are not type 1, but they are
harder to describe.

10.2.6. Equivalent Grammars. Two grammars G and G’ are
equivalent if L(G) = L(G').

FExample: The grammar of algebraic expressions defined at the be-
ginning of the section is equivalent to the following one:

Terminal symbols = {z,y, z, +, *, (,) }, nonterminal symbols = {E, T, F, L},
with start symbol E, and productions

E—-T, FE—E+T,
T—F T-—-TxF

10.2. LANGUAGES AND GRAMMARS 142
F—(E), F—I

L—z, L—y, L—z

10.2.7. Context-Free Interactive Lindenmayer Grammar.
A context-free interactive Lindenmayer grammar is similar to a usual
context-free grammar with the difference that it allows productions of
the form A — B where A € NUT (in a context free grammar A must
be nonterminal). Its rules for deriving strings also are different. In a
context-free interactive Lindenmayer grammar, to derive string 3 from
string «, all symbols in a must be replaced simultaneously.

Example: The von Koch Snowflake. The von Koch Snowflake is a
fractal curve obtained by start with a line segment and then at each
stage transforming all segments of the figure into a four segment polyg-
onal line, as shown below. The von Koch Snowflake fractal is the limit
of the sequence of curves defined by that process.

/N AT A

FicUure 10.1. Von Koch Snowflake, stages 1-3.

5 o E

F1GURrE 10.2. Von Koch Snowflake, stages 4-5

A way to represent an intermediate stage of the making of the
fractal is by representing it as a sequence of movements of three kinds:
'd’= draw a straight line (of a fix length) in the current direction, 'r’'=
turn right by 60°, 'I’= turn left by 60°. For instance we start with a
single horizontal line d, which we then transform into the polygonal
dldrrdld, then each segment is transformed into a polygonal according
to the rule d — dldrrdld, so we get

dldrrdldididrrdldrrdldrrdldldldrrdld

If we represent by D a segment that may no be final yet, then the
sequences of commands used to build any intermediate stage of the
curve can be defined with the following grammar:

10.2. LANGUAGES AND GRAMMARS 143
N ={D}, T ={d,r, 1}, with start symbol D, and productions:
D — DIDrrDID, D —d, r—r, [—1.

Example: The Peano curve. The Peano curve is a space filling curve,
i.e., a function f : [0,1] — [0,1]? such that the range of f is the whole
square [0, 1]?, defined as the limit of the sequence of curves shown in
the figures below.

o

FIGURE 10.3. Peano curve, stages 1-4.

Each element of that sequence of curves can be described as a se-
quence of 90° arcs drawn either anticlockwise ('1") or clockwise ('r’).
The corresponding grammar is as follows:

T ={l,r}, N={C, L, R}, with and start symbol C, and productions
C — LLLL,
L —- RLLLR, R— RLR,

L—1l, R—r, l—Il, r—r.

10.3. LANGUAGE RECOGNITION 144

10.3. Language Recognition

10.3.1. Regular Languages. Recall that a regular language is
the language associated to a regular grammar, i.e., a grammar G =
(V,T, 0, P) in which every production is of the form:

A—a or A—aB or A—)\,
where ABeN=V -T acT.

Regular languages over an alphabet 7" have the following properties
(recall that A = ’empty string’, af = 'concatenation of a and ', " =
‘v concatenated with itself n times’):

1. 0, {\}, and {a} are regular languages for all a € T..

2. If Ly and Ly are regular languages over T the following lan-
guages also are regular:

LiULy={a|a € Liorac Ly}
LiLy ={af |a€ Ly, B € Ly}
Li={ay...an | ap € Ly, n € N},
T"—Li={aeT |a¢L},
LinLy={a|a€L;and o € Ly}.

We justify the above claims about L U Ly, Li Ly and Lj as follows.
We already know how to combine two grammars (see 10.2.4) L; and
Ly to obtain Ly U Ly, L1 Ly and L7, the only problem is that the rules
given in section 10.2.4 do no have the form of a regular grammar, so we

need to modify them slightly (we use the same notation as in section
10.2.4):

1. Union Rule: Instead of adding ¢ — o; and ¢ — 09, add all
productions of the form ¢ — RHS, where RHS is the right
hand side of some production (0y — RHS) € P or (0o —
RHS) € P,.

2. Product Rule: Instead of adding ¢ — 0,09, use oy as start
symbol and replace each production (A — a) € P, with A —
acy and (A — \) € P, with A — os.

3. Closure Rule: Instead of adding ¢ — o010 and ¢ — A, use
o, as start symbol, add o; — A, and replace each production
(A—a) € P, with A — aoy and (A — \) € P, with A — 0.

10.3. LANGUAGE RECOGNITION 145

10.3.2. Regular Expressions. Regular languages can be charac-
terized as languages defined by reqular expressions. Given an alphabet
T, a regular expression over 1" is defined recursively as follows:

1. 0, X\, and a are regular expressions for all a € T.

2. If R and S are regular expressions over 7' the following expres-
sions are also regular: (R), R+ S, R- S, R*.

In order to use fewer parentheses we assign those operations the fol-
lowing hierarchy (from do first to do last): *,-,+. We may omit the
dot: a- B = af.

Next we define recursively the language associated to a given regular
expression:

L) =10,

L(A) =A{A},

L(a) = {a} for each a € T,
L(R+S)=L(R)UL(S),
L(R-S)=L(R)L(S) (language product),
L(R*) = L(R)" (language closure).

So, for instance, the expression a*bb* represents all strings of the
form a"b™ with n > 0, m > 0, a*(b+ ¢) is the set of strings consisting
of any number of a’s followed by a b or a ¢, a(a 4+ b)*b is the set of
strings over {a,b} than start with a and end with b, etc.

Another way of characterizing regular languages is as sets of strings
recognized by finite-state automata, as we will see next. But first we
need a generalization of the concept of finite-state automaton.

10.3.3. Nondeterministic Finite-State Automata. A nonde-
terministic finite-state automaton is a generalization of a finite-state
automaton so that at each state there might be several possible choices
for the “next state” instead of just one. Formally a nondeterministic
finite-state automaton consists of

1. A finite set of states 8.

2. A finite set of input symbols J.

3. A next-state or transition function f:8 x I — P(8).
4. An initial state o € 8.

10.3. LANGUAGE RECOGNITION 146

5. A subset F of § of accepting or final states.

We represent the automaton A = (8,7, f,0,F). We say that a nonde-
terministic finite-state automaton accepts or recognizes a given string
of input symbols if in its transition diagram there is a path from the
starting state to a final state with its edges labeled by the symbols of
the given string. A path (which we can express as a sequence of states)
whose edges are labeled with the symbols of a string is said to represent
the given string.

Ezxample: Consider the nondeterministic finite-state automaton de-
fined by the following transition diagram:

s /4 @

This automaton recognizes precisely the strings of the form b"ab™,
n > 0, m > 0. For instance the string bbabb is represented by the path
(0,0,0,C,C,F). Since that path ends in a final state, the string is
recognized by the automaton.

Next we will see that there is a precise relation between regular
grammars and nondeterministic finite-state automata.

Regular grammar associated to a nondeterministic finite-state au-
tomaton. Let A be a non-deterministic finite-state automaton given as
a transition diagram. Let o be the initial state. Let T be the set of
inputs symbols, let N be the set of states, and V = NUT. Let P be
the set of productions

S — xS
if there is an edge labeled = from S to S and

S — A
if S is a final state. Let G be the regular grammar
G=(V,T,0,P).
Then the set of strings recognized by A is precisely L(G).

Ezample: For the nondeterministic automaton defined above the
corresponding grammar will be:

10.3. LANGUAGE RECOGNITION 147
T = {a,b}, N = {o0,C, F}, with productions

o—bo, oc—aC, C—bC, C—bF, F —\.

The string bbabb can be produced like this:

0 = bo = bbo = bbaC' = bbabC = bbabbF = bbabb .

Nondeterministic finite-state automaton associated to a given requ-
lar grammar. Let G = (V,T, 0, P) be a regular grammar. Let

J=T.
S=NU{F}, where N=V — T, and F ¢ V.
F(S,x)={S"| S —aS' € PYU{F|S —z € P}.
F={FLU{S|S—\e P}.

Then the nondeterministic finite-state automaton A = (8,9, f, 0, F)
recognizes precisely the strings in L(G).

10.3.4. Relationships Between Regular Languages and Au-
tomata. In the previous section we saw that regular languages co-
incide with the languages recognized by nondeterministic finite-state
automata. Here we will see that the term “nondeterministic” can be
dropped, so that regular languages are precisely those recognized by
(deterministic) finite-state automata. The idea is to show that given
any nondeterministic finite-state automata it is possible to construct
an equivalent deterministic finite-state automata recognizing exactly
the same set of strings. The main result is the following:

Let A = (8,7, f,0,F) be a nondeterministic finite-state automaton.
Then A is equivalent to the finite-state automaton A" = (8',7', f', o/, F),
where

8 = P(8).

J =17

o' ={o}.

F={XCS8|XNTF#n.

(X2 =] fSz), f®z)=0.

SeX

ARl

10.3. LANGUAGE RECOGNITION 148

Ezample: Find a (deterministic) finite-state automaton A’ equiva-
lent to the following nondeterministic finite-state automaton A:

/\
start /Q %

Answer: The set of input symbols is the same as that of the given
automaton: J' = J = {a,b}. The set of states is the set of subsets of
§={o0,C,F},ie.

§'={0.{a}.{C}{F} {0.C} {0, F}.{C, F},{0,C, F}}.

The starting state is {o}. The final states of A" are the elements of &’
containing some final state of A:

97/:{{F},{O’,F},{C,F},{U,C,F}}.

Then for each element X of 8’ we draw an edge labeled x from X

to U f(S,z) (and from 0 to 0):

seX

start

We notice that some states are unreachable from the starting state.
After removing the unreachable states we get the following simplified
version of the finite-state automaton:

b a

start E ’
_,/ b

10.3. LANGUAGE RECOGNITION 149

So, once proved that every nondeterministic finite-state automaton
is equivalent to some deterministic finite-state automaton, we obtain
the main result of this section: A language L is regular if and only
if there exists a finite-state automaton that recognizes precisely the
strings in L.

APPENDIX A

A.1. Efficient Computation of Powers Modulo m

We illustrate an efficient method of computing powers modulo m
with an example. Assume that we want to compute 3°*" mod 10.
First write 547 in base 2: 1000100011, hence 547 = 2° + 25 + 2+ 1 =
((2'+1)2'4+1) 241, so: 3547 = ((3*"-3)*"-3)2-3. Next we compute the
expression beginning with the inner parenthesis, and reducing modulo
10 at each step: 32 = 9 (mod 10), 3* = 92 = 81 = 1 (mod 10),
3% =12 = 1 (mod 10), 3% = 12 = 1 (mod 10), 3> -3 =1-3 = 3
(mod 10), etc. At the end we find 3°" =7 (mod 10).

The algorithm in pseudocode would be like this:

1: procedure pow mod(a,x,m) {computes a"x mod m}
2: p:=1
3: bx := binary array(x) {x as a binary array}
4: t :=amodn
5: for k := 1 to length(bx)
6: begin
7: p := (p * p) modm
8: if bx[k] = 1 then
{if k-th binary digit of x is 1}
9: p := (p *t) modn
10: end
11: return p

12: end pow_mod

150

A.1. EFFICIENT COMPUTATION OF POWERS MODULO M 151

The following is a program in C implementing the algorithm:

int pow(int a, int x, int m) {
int p = 1;
int y = (1 << (8 * size of(int) - 2));

a %= m;
while (! (y & x)) y >>= 1;

while (y) {

p *= p;

p %= m;

if (x&y) {
P *= a;

y >>=1;
}

return p;

The following is an alternative algorithm equivalent to running
through the binary representation of the exponent from right to left
instead of left to right:

1: procedure pow mod(a,x,m) {computes a"x mod m}
2 p =1

3 t := a modm

4 while x > 0

5: begin

6 if x is odd then

7 p := (p * t) modn
8: t := (t * t) modnm
9: x := floor(x/2)

10: end

11: return p

12: end pow_mod

A.2. MACHINES AND LANGUAGES 152

A.2. Machines and Languages

A.2.1. Turing Machines. A Turing machine is a theoretical de-
vice intended to define rigorously the concept of algorithm. 1t consists

of

1. An infinite tape made of a sequence of cells. Each cell may be
empty or may contain a symbol from a given alphabet.

2. A control unit containing a finite set of instructions.

3. A tape head able to read and write (or delete) symbols from the
tape.

Tape

W Tape head

control
unit

FIGURE A.1. Turing Machine.

Each machine instruction contains the following five parts:

The current machine state.

A tape symbol read from the current tape cell.

A tape symbol to write into the current tape cell.

A direction for the tape head to move: L = 'move one cell to
the left’, R = 'move one cell to the right’, S = ’stay in the
current cell’.

5. The next machine state.

Ll

Turing machines are generalizations of finite-state automata. A
finite-state automaton is just a Turing machine whose tape head moves
always from left to right and never writes to the tape. The input of
the finite-state automaton is presented as symbols written in the tape.

In general we make the following assumptions:

1. An input is represented on the tape by placing the letters of
the strings in contiguous tape cells. All other cells contain the
blank symbol, which we may denote .

A.2. MACHINES AND LANGUAGES 153

2. The tape is initially positioned at the leftmost cell of the input
string unless specified otherwise.

3. There is one starting state.

4. There is one halt state, which we denote by “Halt”.

The execution of a Turing machine stops when it enters the Halt state
or when it enters a state for which there is no valid move. The output
of the Turing machine is the contents of the tape when the machine
stops.

We say that an input string is accepted by a Turing machine if
the machine enters the Halt state. Otherwise the string is rejected.
This can happen in two ways: by entering a state other than the Halt
state from which there is no move, or by running forever (for instance
executing an infinite loop).

If a Turing machine has at least two instructions with the same state
and input letter, then the machine is nondeterministic. Otherwise it is
deterministic.

Finite-State Automata. A finite-state automata can be interpreted
as a Turing machine whose tape head moves only from left to right and
never writes to the tape.

Pushdown Automata. A pushdown automaton is finite-state au-
tomaton with a stack, i.e., a storage structure in which symbols can be
put and extracted from it by two operations: push (place on the top of
the stack) and pop (take from the top of the stack)—consequently the
last symbol put into the stack is the first symbol taken out. Addition-
ally there is a third operation, nop, that leaves the stack intact. The
next state function takes into account not only the current state and
the symbol read from the input, but also the symbol at the top of the
stack. After reading the next input symbol and the symbol at the top
of the stack, the automaton executes a stack operation and goes to the
next state. Initially there is a single symbol in the stack.

Linearly Bounded Automata. A linearly bounded automaton is a
Turing machine whose tape is limited to the size of its input string
plus two boundary cells that may not be changed.

Computable Functions. Consider a Turing machine T working on
symbols from an alphabet of only one symbol A = {|} (“stroke”). Let
f N — N the function defined so that f(n) = m means that if the

A.2. MACHINES AND LANGUAGES 154

initial input of T" consists of a string of n 4 1 strokes, the output of T
is a string of m + 1 strokes. We say that f is computed by the Turing
machine T. A computable function is a function computed by some
Turing machine. A computable function f(n) halts for a given value
of its argument n if 7" with input n + 1 strokes halts. A computable
function f is total if f(n) halts for every n.

An effective enumeration of a set is a listing of its elements by an
algorithm.

A.2.2. Hierarchy of Languages. Here we mention a hierarchy
of languages that includes (and extends) Chomsky’s classification, in
increasing order of inclusion.

1. Regular languages. They are recognized by finite-state automata.
Ezample: {a™b" | m,n =1,2,3...}.

2. Deterministic context-free languages, recognized by determinis-
tic pushdown automata. Ezample: {a"b" |n =1,2,3...}.

3. Context-free languages, recognized by nondeterministic push-
down automata. Ezample: palindromes over {a,b}.

4. Context-sensitive languages, languages without A recognized by
linearly bounded automata. Ezample: {a™b"c" |n=1,2,3...}

5. Unrestricted or phrase-structure grammars, recognized by Tur-
ing machines.

6. Recursively enumerable languages. A language is recursively
enumerable if there is a Turing machine that outputs all the
strings of the language. FEzample: {a" | f.(n) halts}, where
fo, f1, f2,... is an effective enumeration of all computable func-
tions.

7. Nongramatical languages, languages that are not definable by
any grammar and cannot be recognized by Turing machines.
Ezample: {a™ | f, is total}.

